523 research outputs found
The Astro-WISE approach to quality control for astronomical data
We present a novel approach to quality control during the processing of
astronomical data. Quality control in the Astro-WISE Information System is
integral to all aspects of data handing and provides transparent access to
quality estimators for all stages of data reduction from the raw image to the
final catalog. The implementation of quality control mechanisms relies on the
core features in this Astro-WISE Environment (AWE): an object-oriented
framework, full data lineage, and both forward and backward chaining. Quality
control information can be accessed via the command-line awe-prompt and the
web-based Quality-WISE service. The quality control system is described and
qualified using archive data from the 8-CCD Wide Field Imager (WFI) instrument
(http://www.eso.org/lasilla/instruments/wfi/) on the 2.2-m MPG/ESO telescope at
La Silla and (pre-)survey data from the 32-CCD OmegaCAM instrument
(http://www.astro-wise.org/~omegacam/) on the VST telescope at Paranal.Comment: Accepted for publication in topical issue of Experimental Astronomy
on Astro-WISE information syste
The HIFI spectral survey of AFGL 2591 (CHESS). II. Summary of the survey
This paper presents the richness of submillimeter spectral features in the
high-mass star forming region AFGL 2591. As part of the CHESS (Chemical
Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed
by the Herschel/HIFI instrument. The spectral survey covered a frequency range
from 480 up to 1240 GHz as well as single lines from 1267 to 1901 GHz (i.e. CO,
HCl, NH3, OH and [CII]). Rotational and population diagram methods were used to
calculate column densities, excitation temperatures and the emission extents of
the observed molecules associated with AFGL 2591. The analysis was supplemented
with several lines from ground-based JCMT spectra. From the HIFI spectral
survey analysis a total of 32 species were identified (including
isotopologues). In spite of the fact that lines are mostly quite week, 268
emission and 16 absorption lines were found (excluding blends). Molecular
column densities range from 6e11 to 1e19 cm-2 and excitation temperatures range
from 19 to 175 K. One can distinguish cold (e.g. HCN, H2S, NH3 with
temperatures below 70 K) and warm species (e.g. CH3OH, SO2) in the protostellar
envelope.Comment: Accepted to A&
Herschel and the Molecular Universe
Over the next decade, space-based missions will open up the universe to high spatial and spectral resolution studies at infrared and submillimeter wavelengths. This will allow us to study, in much greater detail, the composition and the origin and evolution of molecules in space. Moreover, molecular transitions in these spectral ranges provide a sensitive probe of the dynamics and the physical and chemical conditions in a wide range of objects at scales ranging from budding planetary systems to galactic and extragalactic sizes. Hence, these missions provide us with the tools to study key astrophysical and astrochemical processes involved in the formation and evolution of planets, stars, and galaxies. These new missions can be expected to lead to the detection of many thousands of new spectral features. Identification, analysis and interpretation of these features in terms of the physical and chemical characteristics of the astronomical sources will require detailed astronomical modeling tools supported by laboratory measurements and theoretical studies of chemical reactions and collisional excitation rates on species of astrophysical relevance. These data will have to be made easily accessible to the scientific community through web-based data archives. In this paper, we will review the Herschel mission and its expected impact on our understanding of the molecular universe
Hot gas and dust in a protostellar cluster near W3(OH
We used the IRAM Interferometer to obtain sub-arcsecond resolution
observations of the high-mass star-forming region W3(OH) and its surroundings
at a frequency of 220 GHz. With the improved angular resolution, we distinguish
3 peaks in the thermal dust continuum emission originating from the hot core
region about 6 arcsec (0.06 pc) east of W3(OH). The dust emission peaks are
coincident with known radio continuum sources, one of which is of non-thermal
nature. The latter source is also at the center of expansion of a powerful
bipolar outflow observed in water maser emission. We determine the hot core
mass to be 15 solar masses based on the integrated dust continuum emission.
Simultaneously many molecular lines are detected allowing the analysis of the
temperature structure and the distribution of complex organic molecules in the
hot core. From HNCO lines, spanning a wide range of excitation, two 200 K
temperature peaks are found coincident with dust continuum emission peaks
suggesting embedded heating sources within them.Comment: 12 pages, 3 figure
Probing the Early Stages of Low-Mass Star Formation in LDN 1689N: Dust and Water in IRAS 16293-2422A, B, and E
We present deep images of dust continuum emission at 450, 800, and 850 micron
of the dark cloud LDN 1689N which harbors the low-mass young stellar objects
(YSOs) IRAS 16293-2422A and B (I16293A and I16293B) and the cold prestellar
object I16293E. Toward the positions of I16293A and E we also obtained spectra
of CO-isotopomers and deep submillimeter observations of chemically related
molecules with high critical densities. To I16293A we report the detection of
the HDO 1_01 - 0_00 and H2O 1_10 - 1_01 ground-state transitions as broad
self-reversed emission profiles with narrow absorption, and a tentative
detection of H2D+ 1_10 - 1_11. To I16293E we detect weak emission of
subthermally excited HDO 1_01 - 0_00. Based on this set of submillimeter
continuum and line data we model the envelopes around I16293A and E. The
density and velocity structure of I16293A is fit by an inside-out collapse
model, yielding a sound speed of a=0.7 km/s, an age of t=(0.6--2.5)e4 yr, and a
mass of 6.1 Msun. The density in the envelope of I16293E is fit by a radial
power law with index -1.0+/-0.2, a mass of 4.4 Msun, and a constant temperature
of 16K. These respective models are used to study the chemistry of the
envelopes of these pre- and protostellar objects.
The [HDO]/[H2O] abundance ratio in the warm inner envelope of I16293A of a
few times 1e-4 is comparable to that measured in comets. This supports the idea
that the [HDO]/[H2O] ratio is determined in the cold prestellar core phase and
conserved throughout the formation process of low-mass stars and planets.Comment: 61 pages, 17 figures. Accepted for publication in ApJ. To get Fig.
13: send email to [email protected]
Urinary 1-Hydroxypyrene Levels in Workers Exposed to Polycyclic Aromatic Hydrocarbon from Rubber Wood Burning
AbstractBackgroundUrinary 1-hydroxypyrene (1-OHP) was selected as a biomarker of polycyclic aromatic hydrocarbons (PAHs) to explore the accumulation level in the bodies of workers at rubber smoke sheet factories in southern Thailand.MethodsSpot urine samples were taken from four groups of workers from June 2006 to November 2007. The nonexposure or control groups included habitual cigarette smokers and nonsmokers. The other two groups were workers exposed to particle-bound PAHs from rubber wood smoke and they were nonsmokers. All spot urine samples were analyzed for 1-OHP and creatinine levels.ResultsThe mean ± standard deviation urinary 1-OHP in the control group of habitual smokers and the nonsmokers was 0.24 ± 0.16 μmol/mol creatinine and not-detected to 0.14 μmol/mol creatinine, respectively. In the workers, the 1-OHP levels on workdays had no significant difference from the 1-OHP levels on the days off. The yearly average 1-OHP level was 0.76 ± 0.41 μmol/mol creatinine whereas the average 1-OHP level during 10 consecutive workdays was 1.06 ± 0.29 μmol/mol creatinine (p > 0.05).ConclusionThe urinary 1-OHP levels of workers exposed to PAHs were high. The accumulation of 1-OHP in the body was not clear although the workers had long working hours with few days off during their working experience. Therefore, a regular day off schedule and rotation shift work during high productive RSS should be set for RSS workers
Detection of water at z = 0.685 towards B0218+357
We report the detection of the H_2O molecule in absorption at a redshift z =
0.68466 in front of the gravitationally lensed quasar B0218+357. We detect the
fundamental transition of ortho-water at 556.93 GHz (redshifted to 330.59 GHz).
The line is highly optically thick and relatively wide (15 km/s FWHM), with a
profile that is similar to that of the previously detected CO(2--1) and
HCO^+(2--1) optically thick absorption lines toward this quasar. From the
measured level of the continuum at 330.59 GHz, which corresponds to the level
expected from the power-law spectrum already
observed at lower frequencies, we deduce that the filling factor of the H_2O
absorption is large. It was already known from the high optical thickness of
the CO, ^{13}CO and C^{18}O lines that the molecular clouds entirely cover one
of the two lensed images of the quasar (all its continuum is absorbed); our
present results indicate that the H_2O clouds are covering a comparable
surface. The H_2O molecules are therefore not confined to small cores with a
tiny filling factor, but are extended over parsec scales. The H_2O line has a
very large optical depth, and only isotopic lines could give us the water
abundance. We have also searched for the 183 GHz line in absorption, obtaining
only an upper limit; this yields constraints on the excitation temperature.Comment: 4 pages, 3 figures, accepted in ApJ Letter
ISO Spectroscopy of Young Stellar Objects
Observations of gas-phase and solid-state species toward
young stellar objects (YSOs) with the spectrometers
on board the Infrared Space Observatory
are reviewed. The excitation and abundances of
the atoms and molecules are sensitive to the changing
physical conditions during star-formation. In
the cold outer envelopes around YSOs, interstellar
ices contain a significant fraction of the heavy element
abundances, in particular oxygen. Different ice
phases can be distinguished, and evidence is found for
heating and segregation of the ices in more evolved
objects. The inner warm envelopes around YSOs are
probed through absorption and emission of gas-phase
molecules, including CO, CO_2, CH_4 and H_2O. An
overview of the wealth of observations on gas-phase
H_2O in star-forming regions is presented. Gas/solid
ratios are determined, which provide information on
the importance of gas-grain chemistry and high temperature
gas-phase reactions. The line ratios of molecules
such as H_2, CO and H_2O are powerful probes
to constrain the physical parameters of the gas. Together
with atomic and ionic lines such as [0 I]
63 µm, [S I] 25 µm and (Si II] 35 µm, they can also
be used to distinguish between photon- and shock-heated
gas. Finally, spectroscopic data on circumstellar
disks around young stars are mentioned. The
results are discussed in the context of the physical
and chemical evolution of YSOs
Detection of interstellar CH_3
Observations with the Short Wavelength Spectrometer (SWS) onboard the {\it
Infrared Space Observatory} (ISO) have led to the first detection of the methyl
radical in the interstellar medium. The branch at 16.5
m and the (0) line at 16.0 m have been unambiguously detected
toward the Galactic center SgrA. The analysis of the measured bands gives a
column density of (8.02.4) cm and an excitation
temperature of K. Gaseous at a similarly low excitation
temperature and are detected for the same line of sight. Using
constraints on the column density obtained from and
visual extinction, the inferred abundance is
. The chemically related
molecule is not detected, but the pure rotational lines of are seen
with the Long Wavelength Spectrometer (LWS). The absolute abundances and the
and ratios are inconsistent with published
pure gas-phase models of dense clouds. The data require a mix of diffuse and
translucent clouds with different densities and extinctions, and/or the
development of translucent models in which gas-grain chemistry, freeze-out and
reactions of with polycyclic aromatic hydrocarbons and solid
aliphatic material are included.Comment: 2 figures. ApJL, Accepte
Submillimeter Emission from Water in the W3 Region
We have mapped the submillimeter emission from the 1(10)-1(01) transition of
ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3
IRS5 region reveals strong water lines at half the positions in the map. The
relative strength of the Odin lines compared to previous observations by SWAS
suggests that we are seeing water emission from an extended region. Across much
of the map the lines are double-peaked, with an absorption feature at -39 km/s;
however, some positions in the map show a single strong line at -43 km/s. We
interpret the double-peaked lines as arising from optically thick,
self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted
lines originate in emission near W3 IRS4. In this model, the unusual appearance
of the spectral lines across the map results from a coincidental agreement in
velocity between the emission near W3 IRS4 and the blue peak of the more
complex lines near W3 IRS5. The strength of the water lines near W3 IRS4
suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page
- …