370 research outputs found
Measurement of g-factor tensor in a quantum dot and disentanglement of exciton spins
We perform polarization-resolved magneto-optical measurements on single InAsP
quantum dots embedded in an InP nanowire. In order to determine all elements of
the electron and hole -factor tensors, we measure in magnetic field with
different orientations. The results of these measurements are in good agreement
with a model based on exchange terms and Zeeman interaction. In our experiment,
polarization analysis delivers a powerful tool that not only significantly
increases the precision of the measurements, but also enables us to probe the
exciton spin state evolution in magnetic fields. We propose a disentangling
scheme of heavy-hole exciton spins enabling a measurement of the electron spin
time
Valorization of humin type byproducts from pyrolytic sugar conversions to biobased chemicals
The pyrolytic sugar fraction, obtained by an aqueous extraction of pyrolysis oil, is an attractive source for sugar-derived platform chemicals. However, solids (humin) formation occurs to a significant extent during hydrolysis and subsequent acid-catalyzed conversion processes. In this study, we report investigations on possible conversion routes (pyrolysis, liquefaction) of such humin byproducts to biobased chemicals. Experiments were carried out with a model humin made from a representative technical pyrolytic sugar and the product was characterized by elemental analysis, GPC, TGA, HPLC, GC-MS, FT-IR and NMR. The obtained humin sample is soluble in organic solvents (dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and isopropanol (IPA)), in contrast to typical more condensed humins from glucose and fructose, allowing characterization using NMR and GPC. All analyses reveal that the humins are oligomeric in nature (M-w of about 900 g/mol) and consist of sugar and furanic fragments linked with among others (substituted) aliphatic, ester units and, in addition, phenolic fragments with methoxy groups. The humins were used as a feed for catalytic pyrolysis and catalytic liquefaction experiments. Catalytic pyrolysis experiments (mg scale, programmable temperature vaporizer (PTV)-GC-MS, 550 degrees C) with HZSM-5 50 as the catalyst gave benzene-toluene-xylene-naphthalene-ethylbenzene mixtures (BTXNE) in 5.1 wt% yield based on humin intake. Liquefaction experiments (batch reactor, 350 degrees C, 4 h, isopropanol as both the solvent and hydrogen donor and Pt/CeO2 (4.43 wt% Pt) catalyst) resulted in 80 wt% conversion of the humin feed to a product oil with considerable amounts of phenolics and aromatics (ca. 24.7 % based on GC detectables in the humin oil). These findings imply that the techno-economic viability of pyrolysis oil biorefineries can be improved by converting humin type byproducts to high value, low molecular weight biobased chemicals
Ozone mediated depolymerization and solvolysis of technical lignins under ambient conditions in ethanol
Technical lignins are highly available and inexpensive feedstocks derived from current large scale biomass utilizing industries. Their valorization represents a bottleneck in the development of biorefineries, as the inherently complex lignin structure often suffers severe condensation during isolation, leading to their current application as low value fuel. Processes able to depolymerize technical lignins into value-added (intermediate) molecules are of great interest for the development of integrated, viable routes aiming at the full valorization of lignocellulosic biomass. Here, we report an effective ozone mediated depolymerization of four technical lignins (Indulin-AT Kraft, ball-milled Indulin-AT Kraft, Alcell organosolv and Fabiola organosolv) in ethanol under ambient conditions without the need for catalysts. 52–87 wt% of these nearly ethanol insoluble lignins was broken down into soluble fragments upon ozone exposure. The average molecular weight of the soluble fragments was shown to have decreased by 40–75% compared to the parent materials. A range of (di)carboxylic acids and (di)ethyl esters was identified, accounting for up to 40 wt% of the ozonated lignin oils. These products are the result of phenol ring-opening reactions as well as oxidative cleavage of unsaturated linking motifs followed by partial esterification. Reactivity varied substantially among the lignin feedstocks. For instance, lower particle sizes and higher degradation of the native lignin structure were shown to be beneficial for the effective action of the ozone. Our results show that a straightforward ozonation process under ambient conditions can depolymerize recalcitrant lignins into oxygenated fragments and low molecular weight products soluble in ethanol. These can potentially be used for the synthesis of high-value drop-in chemicals
Multifunctional Heterogeneous Catalysts for the Selective Conversion of Glycerol into Methyl Lactate
Multifunctional
catalytic systems consisting of physical mixtures of Au nanoparticles
(2–3 nm) supported on metal oxides and Sn-MCM-41 nanoparticles
(50–120 nm) were synthesized and investigated for the selective
conversion of glycerol to methyl lactate. The Au catalyst promotes
the oxidation of glycerol to trioses, whereas the solid acid Sn-MCM-41
catalyzes the rearrangement of the intermediate trioses to methyl
lactate. Among the supported Au nanoparticles, Au/CuO led to the highest
yield and selectivity toward methyl lactate, while the Sn-MCM-41 nanoparticles
showed much better catalytic performance than a benchmark solid acid
catalyst (USY zeolite). The activity of the multifunctional catalytic
system was further optimized by tuning the calcination temperature,
the gold loading in the Au/CuO catalyst, and the Au/Sn molar ratio,
reaching 63% yield of methyl lactate (ML) at 95% glycerol conversion.
This catalytic system also showed excellent reusability. The catalytic
results were rationalized on the basis of a detailed characterization
by means of TEM, N<sub>2</sub>-physisorption, UV–vis spectroscopy,
and by FT-IR using probe molecules (CO and ethanol)
Valorisation of lignin – Achievements of the LignoValue project
Lignocellulosic biorefinery for production of biofuels, materials and chemicals requires valorization of all fractions including lignin. As a consequence of its poly-aromatic structure, lignin potentially serves as a source for aromatic chemicals. The developed biorefinery concept of the LignoValue project comprises two major steps: (1) Organosolv fractionation of wheat straw and willow into (hemi)cellulose and high purity lignin. (2) Further conversion of the isolated lignin via catalytic pyrolysis, supercritical depolymerization and partial hydrodeoxygenation (HDO) into different components like low molecular phenolic compounds, wood adhesives and fuel additives. The cellulose fraction resulting after organosolv fractionation is effectively hydrolysed by enzymes for biofuel production. Quality assessment of the liberated lignins shows interesting characteristics for follow-up chemistry such as high purity, relatively low molar mass and polydispersity. Catalytic pyrolysis in a fluidised bed at 400-500°C was found to convert organosolv lignin in 35-55% phenolic oil, 10% identified monomeric phenolic compounds, 10-20% water, 5-20% gas and 35-55% char. Supercritical depolymerisation of lignin in carbon dioxide based solvents resulted in a similar spectrum of products, however, at a lower temperature (ca 300°C) but at higher pressures. In both thermochemical processes the use of promotors or catalysts lead to an improved yield of the target monomeric aromatic products. Also the residual char fraction shows interesting properties for use in bio-char applications. Catalytic semi-continuous HDO of lignin in hydrogen atmosphere can be manipulated to yield both light oils or heavy oils as potential additives to fuels. Suitable catalysts were found to convert depolymerised lignin to phenolic oils in high yields. In this process no char formation is observed. The lignin oils were successfully tested on lab scale as partial substitution of phenol in resins for gluing wood panels. The LignoValue concept is critically reviewed in a techno-economic analysis demonstrating the potential for further commercial development and adoptation of this innovative biorefinery process in Europe
Deterministic nano-assembly of a coupled quantum emitter - photonic crystal cavity system
The interaction of a single quantum emitter with its environment is a central
theme in quantum optics. When placed in highly confined optical fields, such as
those created in optical cavities or plasmonic structures, the optical
properties of the emitter can change drastically. In particular, photonic
crystal (PC) cavities show high quality factors combined with an extremely
small mode volume. Efficiently coupling a single quantum emitter to a PC cavity
is challenging because of the required positioning accuracy. Here, we
demonstrate deterministic coupling of single Nitrogen-Vacancy (NV) centers to
high-quality gallium phosphide PC cavities, by deterministically positioning
their 50 nm-sized host nanocrystals into the cavity mode maximum with
few-nanometer accuracy. The coupling results in a 25-fold enhancement of NV
center emission at the cavity wavelength. With this technique, the NV center
photoluminescence spectrum can be reshaped allowing for efficient generation of
coherent photons, providing new opportunities for quantum science.Comment: 13 pages, 4 figure
Catalytic hydrotreatment of pyrolytic lignins from different sources to biobased chemicals:Identification of feed-product relations
The pyrolysis liquid biorefinery concept involves separation of pyrolysis liquids in various fractions followed by conversion of the fractions to value-added products. Pyrolytic lignins (PLs), the water-insoluble fractions of pyrolysis liquids, are heterogeneous, cross linked oligomers composed of substituted phenolics whose structure and physicochemical properties vary significantly depending on the biomass source. The catalytic hydrotreatment of six PLs from different biomass sources (pine, prunings, verge grass, miscanthus and sunflower seed peel) was investigated to determine the effect of different feedstocks on the final product composition and particularly the amount of alkylphenolics and aromatics, the latter being important building blocks for the chemical industry. Hydrotreatment was performed with Pd/C, 100 bar of hydrogen pressure and temperatures in the range of 350–435 °C, resulting in depolymerized product mixtures with monomer yields up to 39.1 wt% (based on PL intake). The molecular composition of the hydrotreated oils was shown to be a strong function of the PL feed and reaction conditions. Statistical analyses provided the identification of specific structural drivers on the formation of aromatics and phenolics, and a simple model able to accurately predict the yields of such monomers after catalytic hydrotreatment was obtained (R2 = 0.9944) and cross-validated (R2 = 0.9326). These feed-product relations will support future selections of PL feeds to obtain the highest amounts of valuable biobased chemicals
Transfer hydrogenation from glycerol over a Ni-Co/CeO2 catalyst: A highly efficient and sustainable route to produce lactic acid
Bimetallic Ni-Co catalysts supported on nanosized CeO2 were prepared and investigated as heterogeneous catalysts for the transfer hydrogenation between glycerol and various H2 acceptors (levulinic acid, benzene, nitrobenzene, 1-decene, cyclohexene) to selectively produce lactic acid (salt) and the target hydrogenated compound. The bimetallic NiCo/CeO2 catalyst showed much higher activity than the monometallic Ni or Co counterparts (with equal total metal mass), thus indicating strong synergetic effects. The interaction between the metallic sites and the CeO2 support was thoroughly characterised by means of transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX) mapping, X-ray photoelectron spectroscopy (XPS), hydrogen-temperature programmed reduction (H2-TPR) and X-ray diffraction (XRD). Combining characterisation and catalytic results proved that the Ni species are intrinsically more active than Co species, but that incorporating Co into the catalyst formulation prevented the formation of large Ni particles and led to highly dispersed metal nanoparticles on CeO2, thus leading to the observed enhanced activity for the bimetallic system. The highest yield of lactic acid (salt) achieved in this work was 93% at 97% glycerol conversion (160 °C, 6.5 h at 20 bar N2, NaOH: glycerol = 1.5). The NiCo/CeO2 catalyst also exhibited high activity and selectivity towards the target hydrogenated products in the transfer hydrogenation reactions between glycerol and various H2 acceptors. Batch recycle experiments showed good reusability, with retention of 80% of the original activity after 5 runs
The protein challenge:Matching future demand and supply in Indonesia
Indonesia has the fourth largest population in the world and in the coming years food production will need to catch up with its growth. To fulfill the protein demand of this growing population, the productivity of the Indonesian agricultural sector should be increased. This can be achieved either by expanding the agricultural land or by increasing the productivity of existing agricultural land and protein use efficiency. An expansion of agricultural land is not always possible or desirable: large parts of Indonesia comprise forest areas, including tropical rain forests. Consequently, the optimization of the use of existing agricultural land is inevitable. The present manuscript describes and discusses the current protein consumption and production in Indonesia. It presents the levels predicted for 2035, which would imply a strong gap between consumption and production. Alternatives therefore need to be considered to avoid protein shortage in the future. These would include the use of new biomass resources, utilization of agricultural residues as alternative protein sources for feed and other nonfood applications, and biorefining of biomass sources.</p
- …