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Abstract 
Lignocellulosic biorefinery for production of biofuels, materials and chemicals requires 

valorization of all fractions including lignin. As a consequence of its poly-aromatic 

structure, lignin potentially serves as a source for aromatic chemicals. The developed 

biorefinery concept of the LignoValue project comprises two major steps: 

(1) Organosolv fractionation of wheat straw and willow into (hemi)cellulose and high 

purity lignin.  

(2) Further conversion of the isolated lignin via catalytic pyrolysis, supercritical 

depolymerization and partial hydrodeoxygenation (HDO) into different components like 

low molecular phenolic compounds, wood adhesives and fuel additives.   

The cellulose fraction resulting after organosolv fractionation is effectively hydrolysed 

by enzymes for biofuel production. Quality assessment of the liberated lignins shows 

interesting characteristics for follow-up chemistry such as high purity, relatively low 

molar mass and polydispersity.   

Catalytic pyrolysis in a fluidised bed at 400-500°C was found to convert organosolv 

lignin in 35-55% phenolic oil, 10% identified monomeric phenolic compounds, 10-20% 

water, 5-20% gas and 35-55% char. Supercritical depolymerisation of lignin in carbon 

dioxide based solvents resulted in a similar spectrum of products, however, at a lower 

temperature (ca 300°C) but at higher pressures. In both thermochemical processes the 

use of promotors or catalysts lead to an improved yield of the target monomeric 

aromatic products. Also the residual char fraction shows interesting properties for use in 

bio-char applications. Catalytic semi-continuous HDO of lignin in hydrogen atmosphere 

can be manipulated to yield both light oils or heavy oils as potential additives to fuels. 

Suitable catalysts were found to convert depolymerised lignin to phenolic oils in high 

yields. In this process no char formation is observed. The lignin oils were successfully 

tested on lab scale as partial substitution of phenol in resins for gluing wood panels.         

The LignoValue concept is critically reviewed in a techno-economic analysis 

demonstrating the potential for further commercial development and adoptation of this 

innovative biorefinery process in Europe.  

 

 
Introduction 
Valorisation of lignin plays a key role in the further development of cost effective 

biorefinery processes for biofuels and the production of biobased materials and 

chemicals from lignocellulosic biomass. Today‟s increased demand for alternatives to 

fossil carbon based products, such as the production of transportation biofuels and bulk 

“green” chemicals, expands the interest and the need to added value to the unconverted 

lignin fraction. As a consequence of its poly-aromatic structure and large availability, 

lignin is the obvious candidate to serve as a future source for aromatic chemicals. 
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Lignin is found in trees and other lignocellulosic plant-based materials representing 15-

25% of its weight and about 40% of the biomass energy content.   

In biorefinery processes, lignin will be produced in large quantities, additionally to 

lignin production in the paper and pulp industry, and can serve as a future aromatic 

resource for the production of green chemicals [1]. 

Pre-treatment is a crucial step in the biochemical production of second generation 

biofuels since it is required to increase the accessibility of the cellulose polymers for 

subsequent enzymatic hydrolysis. Most pre-treatment technologies are optimized for 

sugar production only and produce a residue that is only suited for heat and power 

generation. However, to improve cost-effectiveness optimum valorization of all biomass 

fractions is required. Therefore, an organosolv fractionation technology based on 

ethanol-water was chosen with the aim to achieve full fractionation of all main 

constituents of lignocellulosic biomass including lignin, in a sufficient quality for 

further conversion into marketable products. Lignin conversion was studied via catalytic 

pyrolysis, supercritical depolymerization and partial hydrodeoxygenation (HDO) into 

different components like phenolic oils, low molecular phenolic compounds, wood 

adhesives and fuel additives [2].  

For this study two model feedstocks were chosen, eg. willow and wheat straw which are 

common crops in The Netherlands. For the lignin conversion process development was 

mainly carried out using an organosolv lignin from mixed hardwoods (Alcell
tm

) to get a 

good comparison with earlier work. Then the developed conversion processes were 

applied to wheat straw and willow organosolv lignin. Finally, the whole biorefinery 

concept studied in LignoValue including organosolv fractionation and pyrolysis was 

reviewed by comparing different scenario‟s with a techno-economic analysis. 

 

 

Experimental 
 

Organosolv fractionation 

Willow and wheat straw were cut into pieces <2 cm and fractionated in 1L or 20L 

pressurized reactors with ethanol-water mixtures at 170°C - 200°C during 60 min at 

temperature [3,4]. The enzymatic digestibility of fresh and pretreated lignocellulose was 

measured with enzyme Accellerase 1500 (Genencore, Rochester, NY) at 50 °C at 35 

FPU/gr dry substrate and incubation for 72 h. The enzymatic glucose yield was 

calculated on the basis of the mean glucose concentration in the hydrolysate as 

determined by HPAEC-PAD after 72 h and the glucan content of the substrate [3].   

 

Lignin recovery and analysis 

Lignin was precipitated from the organosolv liquor and the washing solution upon 

dilution with refrigerated water (water:solution 3:1 w/w). After sedimentation of the 

particles by centrifugation, the supernatant was decanted and the lignin was dried and 

weighted. Main lignin characteristics were determined as described previously [5].  

 

Lignin conversion 

1. Pyrolysis on lignin was conducted at 400 - 500°C in an 1 kg/h bubbling fluidized bed 

reactor with a cooled screw-feeder and integrated product recovery [6]. To support the 

process development analytical Py-GC/MS was carried out at 400 - 800°C [7].  

2. Lignin was converted in a mixture of carbon dioxide/acetone/water under 

supercritical conditions (SCC) in a 100 ml PARR reactor at 300°C, 100 bar. Products 

were captured after pressure release in acetone for further analyses [8].   
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3. Lignin was converted by hydrodeoxygenation (HDO) in a 100 ml reactor at 350 – 

400°C, 100 bar hydrogen pressure in the presence of a heterogeneous catalyst, e.g. 

Ru/C, with the formation of water and low molecular weight phenolics. Products were 

characterized as described earlier [6].  

 

Lignin oil as wood adhesive 

The lignin oil was obtained from a catalytic hydrotreatment of pyrolytic lignin, 

precipitated from a fast pyrolysis oil. Wood adhesive formulations with 50 and 75 wt% 

lignin oil were compared with a standard resin made with phenol-formaldehyde only. 

Wood veneers were glued with 150 g/m
2 

resin with a contact interface of 25x25 mm. 

The specimens were hot pressed at 200°C under 3 MPa pressure for 5 min and tested 

according to European standard EN-314. 

 

Techno-economical and socio-economical analysis of biorefinery concept 

The different steps in the biorefinery concept were evaluated by a techno-economical 

assessment. At present, the lignin pyrolysis step was the most advanced technology and 

for this step 4 case scenario‟s were selected (Figure 7). A conceptual design based on a 

Pyrolysis Plant of 1000 ton/day of dry lignin includes mass and heat balances based on 

literature (petrochemical analogs) and lab-scale results was used. 

To evaluate the economic potential the following assumptions were made: 

Current cost level of a biorefinery lignin was set on ~350 €/ton.  

Pyrolysis reactor was modelled as an „average‟ state-of-the-art petrochemical fluid 

catalytic cracking (FCC) unit including primary downstream treatment (bio-oil and bio-

char collection, dewatering). Downstream product upgrading equipment was modelled 

according to petrochemical analogs.  

Socio-economic evaluation of this innovative biorefinery concept including lignin 

valorization was performed to identify the potential “set-up and location” for the whole 

process chain and identify chances and bottlenecks.  

 

 

Results and discussion 
 

Organosolv fractionation 

Willow and wheat straw can be effectively separated by organosolv fractionation in 

ethanol-water mixtures in its major compounds. Temperature and catalysts have a clear 

effect on this fractionation. The temperature should not exceed 200°C as cellulose 

hydrolysis starts (Figure 1).  

For willow and wheat straw maximum enzymatic cellulose hydrolysis was obtained 

with 0.02M HCl at the reaction conditions studied: liquid:solid : 9.6 kg/kg dry biomass, 

ethanol:water : 55-45% w/w, pretreatment severity: log R = 4.65. The obtained 

enzymatic glucose yield based the glucan content of the feedstock was 86 and 99% for 

willow wood and wheat straw, respectively (Figure 2).. These conditions lead to 73 and 

83% hemicellulose hydrolysis, 51 and 68% delignification for these feedstocks. For 

acidic catalysts it was found that their effect was directly correlated to the pH, 

independently of the type of acid used.  
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Figure 1. Effect of temperature on the 

organosolv fractionation of willow, 

EtOH:H2O 60:40 wt%, 60 min 

Figure 2. Effect of catalyst type on 

enzymatic digestibility of organosolv 

treated willow and wheat straw   

 

Organosolv lignin characteristics 

From the organosolv black liquors lignin can be easily recovered with up to 70% yield 

from the original lignin in biomass. Organosolv lignins are relatively pure, >90 wt%, up 

to 96% for wheat straw lignin. Main impurity is oligomeric xylan. These lignins are 

sulphur- and ash-free and have a relatively low Mw 2000-3500 and narrow distribution. 

 

Lignin conversion 

 

Lignin pyrolysis 

Py-GC/MS showed that a maximum yield of phenolic compounds was obtained at 

600°C of 17.2% for Alcell lignin and 15.5% for soda non-wood lignin (Granit). Most of 

the phenolic compounds had an individual yield of less than 1%; however, for Alcell 

lignin, 5-hydroxyvanillin had a yield of 4.29 wt %, and for soda lignin, 2-methoxy-4-

vinylphenol had a yield of 4.15 wt % on dry ash-free lignin [7]. 

Bubbling fluidized bed pyrolysis at 500°C resulted in good mass balances for 3 lignins 

studied with the highest oil yield of 55% for ECN wheat straw lignin (Figure 3). 

Pyrolysis oils contain a substantial amount of oligomeric lignin fragments. Granit soda 

lignin from grass/straw pyrolysis resulted in the highest monomers yield. Main aromatic 

compounds obtained from wheat straw lignin (ECN) and non-wood lignin (Granit) are 

guaiacols, for hardwood lignin (Alcell) mainly syringols. The pyrolysis results reflect 

the compositional differences between the lignins.  

 

Lignin conversion under supercritical conditions (SCC) 

Organosolv hardwood (Alcell) and wheat straw lignin (ECN) were converted to a total 

yield of identified aromatic compounds of 10% based on dry lignin together with 40-

50% char, 10% gases and 30-45% phenolic oil with oligomers and monomers (Figure 

4). Formic acid act as a hydrogen donor and increases the yield of aromatics. During 

this process a strong competition occurs between depolymerisation of lignin and 

recondensation of fragments. This leads to a residual lignin char fraction consisting of a 

substantially reduced oxygen content, improved thermal stability and a high content of 

carbon.     
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Figure 3. Products from lignin pyrolysis, 

500°C, fluidised bed 

Figure 4. Effect of SSC treatment on molar 

mass of phenolic oil derived from lignin  

 

Hydrodeoxygenation (HDO) of lignin  
Figure 5 showed that hardwood lignin (Alcell) was converted to a lignin HDO oil yield 

of about 70 % depending on the choice of catalyst. The highest alkylphenolic amount 

was achieved by using Ru/C. Under these conditions negligible char formation occurs.  

Lower molecular weight fractions of lignin lead to products with a higher H/C ratio and 

higher amounts of hydrocarbons.  

 

Lignin oil as wood adhesive 

Figure 6 showed that up to 75 wt% replacement of phenol in a PF-resin can be achieved 

with lignin oil to get sufficient glue strength of a plywood.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of catalyst type on HDO 

of lignin to oil yield and alkylphenolics 

Figure 6. Strength of wood adhesive 

partially substituted by lignin oil  

 

Techno-economical and socio-economical analysis of biorefinery concept 

Case 1. Lignin for fuel application was considered as not viable. Case 4 with the 

potentially highest value per ton lignin was considered as a long term option as 

downstream processing will be the determining factor and no sufficient lab-data is 

available (Figure 7).  

Cases 2 and 3 showed realistic options and give directions to future biorefineries 

including lignin valorisation. These 2 cases will be further evaluated in the whole 

biorefinery concept (Figure 7).   

Socio-economic analysis showed that Europe is well placed for a biorefinery with 

integrated lignin valorization. Ports in Europe, e.g. Rotterdam, are favorite locations as 

import of biomass and existing links with the chemical industry can be well integrated. 

For 100 PJ savings on fossil resources about 6 millions tonnes of lignin must be 
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valorized which need import of lignin containing rest streams. Use of the phenolic oil 

derived from lignin for resins or materials resulted in the highest impact.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Scenarios for lignin pyrolysis products valorization 

 

Conclusions 

Organosolv fractionation of willow and wheat straw in ethanol-water is effective.  

The cellulose in pretreated biomass can almost completely be hydrolysed to glucose. 

High purity organosolv lignin can be easily recovered up to 70%.  

Catalytic pyrolysis and supercritical conversion of organosolv lignin lead to 40-55% 

phenolic oil, 40-50% char, and 10-20% gases. The phenolic oil consists of 10-20% 

monomers. Catalysts improve the overall conversion of lignin to monomeric phenolics.  

Catalytic hydrodeoxygenation of lignin resulted in high oil yields (70%) with 

substantial amounts of alkylphenolics and hardly any char formation.  

Lignin oil show high potential for use as replacement of phenol in PF-wood resins.  

The first results of the techno-economic analysis of lignin pyrolysis show that using the 

phenolic oil for wood adhesives (resins) and bitumen together with the gases for fuel 

might give realistic scenarios for lignin valorization in a future biorefinery. This 

biorefinery can be implemented near a port in Europe to benefit from biomass import 

and chemical industry integrations.    
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Techno-economic evaluation for 4 product-driven cases

1. gas  fuel

bio-oil  fuel

char  fuel

2. gas  fuel

bio-oil  used as such in resins 

char  soil improver

3. gas  fuel

bio-oil  monomeric phenols mixture for resins

oligomeric phenols for biobitumen

char  solid bitumen additive

4. gas  fuel

bio-oil  separated into individual phenols

char  activated carbon

not viable!

realistic 

low value option

realistic  

high value option

max value option
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