57 research outputs found
Large-Scale Statistical Analysis of Defect Emission in hBN: Revealing Spectral Families and Influence of Flakes Morphology
Quantum emitters in two-dimensional layered hexagonal boron nitride are
quickly emerging as a highly promising platform for next-generation quantum
technologies. However, precise identification and control of defects are key
parameters to achieve the next step in their development. We conducted a
comprehensive study by analyzing over 10,000 photoluminescence emission lines,
revealing 11 distinct defect families within the 1.6 to 2.2 eV energy range.
This challenges hypotheses of a random energy distribution. We also reported
averaged defect parameters, including emission linewidths, spatial density,
phonon side bands, and the Debye-Waller factors. These findings provide
valuable insights to decipher the microscopic origin of emitters in hBN hosts.
We also explored the influence of hBN host morphology on defect family
formation, demonstrating its crucial impact. By tuning flake size and
arrangement we achieve selective control of defect types while maintaining high
spatial density. This offers a scalable approach to defect emission control,
diverging from costly engineering methods. It highlights the importance of
investigating flake morphological control to gain deeper insights into the
origins of defects and to expand the spectral tailoring capabilities of defects
in hBN
Rheological constitutive equation for model of soft glassy materials
We solve exactly and describe in detail a simplified scalar model for the low
frequency shear rheology of foams, emulsions, slurries, etc. [P. Sollich, F.
Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)]. The model
attributes similarities in the rheology of such ``soft glassy materials'' to
the shared features of structural disorder and metastability. By focusing on
the dynamics of mesoscopic elements, it retains a generic character.
Interactions are represented by a mean-field noise temperature x, with a glass
transition occurring at x=1 (in appropriate units). The exact solution of the
model takes the form of a constitutive equation relating stress to strain
history, from which all rheological properties can be derived. For the linear
response, we find that both the storage modulus G' and the loss modulus G''
vary with frequency as \omega^{x-1} for 1<x<2, becoming flat near the glass
transition. In the glass phase, aging of the moduli is predicted. The steady
shear flow curves show power law fluid behavior for x<2, with a nonzero yield
stress in the glass phase; the Cox-Merz rule does not hold in this
non-Newtonian regime. Single and double step strains further probe the
nonlinear behavior of the model, which is not well represented by the BKZ
relation. Finally, we consider measurements of G' and G'' at finite strain
amplitude \gamma. Near the glass transition, G'' exhibits a maximum as \gamma
is increased in a strain sweep. Its value can be strongly overestimated due to
nonlinear effects, which can be present even when the stress response is very
nearly harmonic. The largest strain \gamma_c at which measurements still probe
the linear response is predicted to be roughly frequency-independent.Comment: 24 pages, REVTeX, uses multicol, epsf and amssymp; 20 postscript
figures (included). Minor changes to text (relation to mode coupling theory,
update on recent foam simulations etc.) and figures (emphasis on low
frequency regime); typos corrected and reference added. Version to appear in
Physical Review
Holographic Traction Force Microscopy
Traction Force Microscopy (TFM) computes the forces exerted at the surface of an elastic material by measuring induced deformations in volume. It is used to determine the pattern of the adhesion forces exerted by cells or by cellular assemblies grown onto a soft deformable substrate. Typically, colloidal particles are dispersed in the substrate and their displacement is monitored by fluorescent microscopy. As with any other fluorescent techniques, the accuracy in measuring a particule’s position is ultimately limited by the number of evaluated fluorescent photons. Here, we present a TFM technique based on the detection of probe particle displacements by holographic tracking microscopy. We show that nanometer scale resolutions of the particle displacements can be obtained and determine the maximum volume fraction of markers in the substrate. We demonstrate the feasibility of the technique experimentally and measure the three-dimensional force fields exerted by colorectal cancer cells cultivated onto a polyacrylamide gel substrate
Diffusing-wave spectroscopy of nonergodic media
We introduce an elegant method which allows the application of diffusing-wave
spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on
the idea that light transmitted through a sandwich of two turbid cells can be
considered ergodic even though only the second cell is ergodic. If absorption
and/or leakage of light take place at the interface between the cells, we
establish a so-called "multiplication rule", which relates the intensity
autocorrelation function of light transmitted through the double-cell sandwich
to the autocorrelation functions of individual cells by a simple
multiplication. To test the proposed method, we perform a series of DWS
experiments using colloidal gels as model nonergodic media. Our experimental
data are consistent with the theoretical predictions, allowing quantitative
characterization of nonergodic media and demonstrating the validity of the
proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.
Temporal fluctuations of waves in weakly nonlinear disordered media
We consider the multiple scattering of a scalar wave in a disordered medium
with a weak nonlinearity of Kerr type. The perturbation theory, developed to
calculate the temporal autocorrelation function of scattered wave, fails at
short correlation times. A self-consistent calculation shows that for
nonlinearities exceeding a certain threshold value, the multiple-scattering
speckle pattern becomes unstable and exhibits spontaneous fluctuations even in
the absence of scatterer motion. The instability is due to a distributed
feedback in the system "coherent wave + nonlinear disordered medium". The
feedback is provided by the multiple scattering. The development of instability
is independent of the sign of nonlinearity.Comment: RevTeX, 15 pages (including 5 figures), accepted for publication in
Phys. Rev.
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins.
The psychrotrophic bacterium Pseudomonas fragi was subjected to cold shocks from 30 or 20 to 5 degrees C. The downshifts were followed by a lag phase before growth resumed at a characteristic 5 degrees C growth rate. The analysis of protein patterns by two-dimentional gel electrophoresis revealed overexpression of 25 or 17 proteins and underexpression of 12 proteins following the 30- or 20-to-5 degrees C shift, respectively. The two downshifts shared similar variations of synthesis of 20 proteins. The kinetic analysis distinguished the induced proteins into cold shock proteins (Csps), which were rapidly but transiently overexpressed, and cold acclimation proteins (Caps), which were more or less rapidly induced but still overexpressed several hours after the downshifts. Among the cold-induced proteins, four low-molecular-mass proteins, two of them previously characterized as Caps (CapA and CapB), and heat acclimation proteins (Haps) as well as heat shock proteins (Hsps) for the two others (TapA and TapB) displayed higher levels of induction. Partial amino acid sequences, obtained by microsequencing, were used to design primers to amplify by PCR the four genes and then determine their nucleotide sequences. A BamHI-EcoRI restriction fragment of 1.9 kb, containing the complete coding sequence for capB, was cloned and sequenced. The four peptides belong to the family of small nucleic acid-binding proteins as CspA, the major Escherichia coli Csp. They are likely to play a major role in the adaptative response of P. fragi to environmental temperature changes
Temperature-dependent structure of R-CD/PEO-based polyrotaxanes in concentrated solution in DMSO: kinetics and multiblock copolymer behavior
International audienc
Thixotropy of reactive suspensions: The case of cementitious materials
International audienc
- …