326 research outputs found

    Quantum signatures in laser-driven relativistic multiple-scattering

    Full text link
    The dynamics of an electronic Dirac wave packet evolving under the influence of an ultra-intense laser pulse and an ensemble of highly charged ions is investigated numerically. Special emphasis is placed on the evolution of quantum signatures from single to multiple scattering events. We quantify the occurrence of quantum relativistic interference fringes in various situations and stress their significance in multiple-particle systems, even in the relativistic range of laser-matter interaction.Comment: 4 pages, 2 figures, LaTeX, revtex

    Electron gas polarization effect induced by heavy H-like ions of moderate velocities channeled in a silicon crystal

    Get PDF
    We report on the observation of a strong perturbation of the electron gas induced by 20 MeV/u U91+^{91+} ions and 13 MeV/u Pb81+^{81+} ions channeled in silicon crystals. This collective response (wake effect) in-duces a shift of the continuum energy level by more than 100 eV, which is observed by means of Radiative Electron Capture into the K and L-shells of the projectiles. We also observe an increase of the REC probability by 20-50% relative to the probability in a non-perturbed electron gas. The energy shift is in agreement with calculations using the linear response theory, whereas the local electron density enhancement is much smaller than predicted by the same model. This shows that, for the small values of the adiabaticity parameter achieved in our experiments, the density fluctuations are not strongly localized at the vicinity of the heavy ions

    Isotope shift in the dielectronic recombination of three-electron ^{A}Nd^{57+}

    Get PDF
    Isotope shifts in dielectronic recombination spectra were studied for Li-like ^{A}Nd^{57+} ions with A=142 and A=150. From the displacement of resonance positions energy shifts \delta E^{142,150}(2s-2p_1/2)= 40.2(3)(6) meV (stat)(sys)) and \delta E^{142,150}(2s-2p_3/2) = 42.3(12)(20) meV of 2s-2p_j transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of ^{142,150}\delta = -1.36(1)(3) fm^2. The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.Comment: 10 pages, 3 figures, accepted for publication in Physical Review Letter

    Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    Full text link
    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-ZZ ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of Quantum Electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-ZZ ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in Nature.Comment: Version 18/11/0

    Radiative recombination of bare Bi83+: Experiment versus theory

    Get PDF
    Electron-ion recombination of completely stripped Bi83+ was investigated at the Experimental Storage Ring (ESR) of the GSI in Darmstadt. It was the first experiment of this kind with a bare ion heavier than argon. Absolute recombination rate coefficients have been measured for relative energies between ions and electrons from 0 up to about 125 eV. In the energy range from 15 meV to 125 eV a very good agreement is found between the experimental result and theory for radiative recombination (RR). However, below 15 meV the experimental rate increasingly exceeds the RR calculation and at Erel = 0 eV it is a factor of 5.2 above the expected value. For further investigation of this enhancement phenomenon the electron density in the interaction region was set to 1.6E6/cm3, 3.2E6/cm3 and 4.7E6/cm3. This variation had no significant influence on the recombination rate. An additional variation of the magnetic guiding field of the electrons from 70 mT to 150 mT in steps of 1 mT resulted in periodic oscillations of the rate which are accompanied by considerable changes of the transverse electron temperature.Comment: 12 pages, 14 figures, to be published in Phys. Rev. A, see also http://www.gsi.de/ap/ and http://www.strz.uni-giessen.de/~k

    Subshell-selective x-ray studies of radiative recombination of U92+{\mathrm{U}}^{92+} ions with electrons for very low relative energies

    Get PDF
    Radiative recombination (RR) into the K shell and L subshells of U92+ ions interacting with cooling electrons has been studied in an x-ray RR experiment at the electron cooler of the Experimental Storage Ring at GSI. The measured radiative recombination rate coefficients for electron-ion relative energies in the range 0–1000 meV demonstrate the importance of relativistic effects. The observed asymmetry of the measured K-RR x-ray emission with respect to the cooling energy, i.e., zero average relative velocity (⟹vrel⟩=0), are explained by fully relativistic RR calculations. With our new approach, we show that the study of the angular distribution of RR photons for different relative energies opens new perspectives for detailed understanding of the RR of ions with cooling electrons in cold magnetized plasma

    Ion slowing down and charge exchange at small impact parameters selected by channeling: superdensity effects

    Get PDF
    CASInternational audienceIn two experiments performed with 20-30 MeV/u highly charged heavy ions (Pb56+, U91+) channeled through thin silicon crystals, we observed the original features of superdensity, associated to the glancing collisions with atomic rows undergone by part of the incident projectiles. In particular the very high collision rate yields a quite specific charge exchange regime, that leads to a higher ionization probability than in random conditions. X-ray measurements show that electrons captured in outershells are prevented from being stabilized, which enhances the lifetime of the projectile innershell vacancies. The charge state distributions and the energy loss spectra are compared to Monte-Carlo simulations. These simulations confirm, extend and illustrate the qualitative analysis of the experimental results

    Isotope Shift in the Dielectronic Recombination of Three-electron \u3csup\u3eA\u3c/sup\u3eNd⁔⁷âș

    Get PDF
    Isotope shifts in dielectronic recombination spectra were studied for Li-like ANd57+ ions with A = 142 and A = 150. From the displacement of resonance positions energy shifts ÎŽE142 150(2s-2p1/2) = 40.2(3)(6) meV [(stat)(sys)] and ÎŽE142 150(2s - 2p3/2) = 42.3(12)(20)meV of 2s - 2pj transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of 142 150ή⟹ r2⟩ = -1.36(1)(3) fm2. The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size
    • 

    corecore