2,545 research outputs found
High resolution imaging with Fresnel interferometric arrays: suitability for exoplanet detection
We propose a new kind of interferometric array that yields images of high
dynamic range and large field. The numerous individual apertures in this array
form a pattern related to a Fresnel zone plate. This array can be used for
astrophysical imaging over a broad spectral bandwidth spanning from the U.V.
(50 nanometers) to the I.R. (20 microns). Due to the long focal lengths
involved, this instrument requires formation-flying of two space borne vessels.
We present the concept and study the S/N ratio in different situations, then
apply these results to probe the suitability of this concept to detect
exoplanets.Comment: 12 pages, 19 figures, to be published in A&
Water-based peeling of thin hydrophobic films
Inks of permanent markers and water-proof cosmetics create elastic thin films
upon application on a surface. Such adhesive materials are deliberately
designed to exhibit water-repellent behavior. Therefore, patterns made up of
these inks become resistant to moisture and cannot be cleaned by water after
drying. However, we show that sufficiently slow dipping of such elastic films,
which are adhered to a substrate, into a bath of pure water allows complete
removal of the hydrophobic coatings. Upon dipping, the air-water interface in
the bath forms a contact line on the substrate, which exerts a
capillary-induced peeling force at the edge of the hydrophobic thin film. We
highlight that this capillary peeling process is more effective at lower
velocities of the air-liquid interface and lower viscosities. Capillary peeling
not only removes such thin films from the substrate but also transfers them
flawlessly onto the air-water interface
Pupil remapping for high contrast astronomy: results from an optical testbed
The direct imaging and characterization of Earth-like planets is among the
most sought-after prizes in contemporary astrophysics, however current optical
instrumentation delivers insufficient dynamic range to overcome the vast
contrast differential between the planet and its host star. New opportunities
are offered by coherent single mode fibers, whose technological development has
been motivated by the needs of the telecom industry in the near infrared. This
paper presents a new vision for an instrument using coherent waveguides to
remap the pupil geometry of the telescope. It would (i) inject the full pupil
of the telescope into an array of single mode fibers, (ii) rearrange the pupil
so fringes can be accurately measured, and (iii) permit image reconstruction so
that atmospheric blurring can be totally removed. Here we present a laboratory
experiment whose goal was to validate the theoretical concepts underpinning our
proposed method. We successfully confirmed that we can retrieve the image of a
simulated astrophysical object (in this case a binary star) though a pupil
remapping instrument using single mode fibers.Comment: Accepted in Optics Expres
Efficient simulation of non-crossing fibers and chains in a hydrodynamic solvent
An efficient simulation method is presented for Brownian fiber suspensions,
which includes both uncrossability of the fibers and hydrodynamic interactions
between the fibers mediated by a mesoscopic solvent. To conserve hydrodynamics,
collisions between the fibers are treated such that momentum and energy are
conserved locally. The choice of simulation parameters is rationalised on the
basis of dimensionless numbers expressing the relative strength of different
physical processes. The method is applied to suspensions of semiflexible fibers
with a contour length equal to the persistence length, and a mesh size to
contour length ratio ranging from 0.055 to 0.32. For such fibers the effects of
hydrodynamic interactions are observable, but relatively small. The
non-crossing constraint, on the other hand, is very important and leads to
hindered displacements of the fibers, with an effective tube diameter in
agreement with recent theoretical predictions. The simulation technique opens
the way to study the effect of viscous effects and hydrodynamic interactions in
microrheology experiments where the response of an actively driven probe bead
in a fiber suspension is measured.Comment: 12 pages, 2 tables, 5 figure
Space-time estimation of a particle system model
13 pagesLet X be a discrete time contact process (CP) on the discrete bidimensional lattice as define by Durett - Levin (1994) . We study estimation of the model based on space-time evolution on a finite subset of sites. For this, we make use of a marginal pseudo-likelihood. The estimator obtained is consistent and asymptoticaly normal for non-vanishing supercritical CP. Numerical studies confirm these results
Exoplanets imaging with a Phase-Induced Amplitude Apodization Coronagraph - I. Principle
Using 2 aspheric mirrors, it is possible to apodize a telescope beam without
losing light or angular resolution: the output beam is produced by
``remapping'' the entrance beam to produce the desired light intensity
distribution in a new pupil. We present the Phase-Induced Amplitude Apodization
Coronagraph (PIAAC) concept, which uses this technique, and we show that it
allows efficient direct imaging of extrasolar terrestrial planets with a
small-size telescope in space. The suitability of the PIAAC for exoplanet
imaging is due to a unique combination of achromaticity, small inner working
angle (about 1.5 ), high throughput, high angular resolution and
large field of view. 3D geometrical raytracing is used to investigate the
off-axis aberrations of PIAAC configurations, and show that a field of view of
more than 100 in radius is available thanks to the correcting
optics of the PIAAC. Angular diameter of the star and tip-tilt errors can be
compensated for by slightly increasing the size of the occulting mask in the
focal plane, with minimal impact on the system performance. Earth-size planets
at 10 pc can be detected in less than 30s with a 4m telescope. Wavefront
quality requirements are similar to classical techniques.Comment: 35 pages, 16 figures, Accepted for publication in Ap
Magnetic pair-breaking in superconducting (Ba,K)BiO_3 investigated by magnetotunneling
The de Gennes and Maki theory of gapless superconductivity for dirty
superconductors is used to interpret the tunneling measurements on the strongly
type-II high-Tc oxide-superconductor Ba1-xKxBiO3 in high magnetic fields up to
30 Tesla. We show that this theory is applicable at all temperatures and in a
wide range of magnetic fields starting from 50 percent of the upper critical
field Bc2. In this magnetic field range the measured superconducting density of
states (DOS) has the simple energy dependence as predicted by de Gennes from
which the temperature dependence of the pair-breaking parameter alpha(T), or
Bc2(T), has been obtained. The deduced temperature dependence of Bc2(T) follows
the Werthamer-Helfand-Hohenberg prediction for classical type-II
superconductors in agreement with our previous direct determination. The
amplitudes of the deviations in the DOS depend on the magnetic field via the
spatially averaged superconducting order parameter which has a square-root
dependence on the magnetic field. Finally, the second Ginzburg-Landau parameter
kappa2(T) has been determined from the experimental data.Comment: 11 pages, 5 figure
Coronagraphic Low Order Wave Front Sensor : post-processing sensitivity enhancer for high performance coronagraphs
Detection and characterization of exoplanets by direct imaging requires a
coronagraph designed to deliver high contrast at small angular separation. To
achieve this, an accurate control of low order aberrations, such as pointing
and focus errors, is essential to optimize coronagraphic rejection and avoid
the possible confusion between exoplanet light and coronagraphic leaks in the
science image. Simulations and laboratory prototyping have shown that a
Coronagraphic Low Order Wave-Front Sensor (CLOWFS), using a single defocused
image of a reflective focal plane ring, can be used to control tip-tilt to an
accuracy of 10^{-3} lambda/D. This paper demonstrates that the data acquired by
CLOWFS can also be used in post-processing to calibrate residual coronagraphic
leaks from the science image. Using both the CLOWFS camera and the science
camera in the system, we quantify the accuracy of the method and its ability to
successfully remove light due to low order errors from the science image. We
also report the implementation and performance of the CLOWFS on the Subaru
Coronagraphic Extreme AO (SCExAO) system and its expected on-sky performance.
In the laboratory, with a level of disturbance similar to what is encountered
in a post Adaptive Optics beam, CLOWFS post-processing has achieved speckle
calibration to 1/300 of the raw speckle level. This is about 40 times better
than could be done with an idealized PSF subtraction that does not rely on
CLOWFS.Comment: 10 pages, 7 figures, accepted for publication in PAS
Influence of flow confinement on the drag force on a static cylinder
The influence of confinement on the drag force on a static cylinder in a
viscous flow inside a rectangular slit of aperture has been investigated
from experimental measurements and numerical simulations. At low enough
Reynolds numbers, varies linearly with the mean velocity and the viscosity,
allowing for the precise determination of drag coefficients and
corresponding respectively to a mean flow parallel and
perpendicular to the cylinder length . In the parallel configuration, the
variation of with the normalized diameter of the
cylinder is close to that for a 2D flow invariant in the direction of the
cylinder axis and does not diverge when . The variation of
with the distance from the midplane of the model reflects the
parabolic Poiseuille profile between the plates for while it
remains almost constant for . In the perpendicular configuration,
the value of is close to that corresponding to a 2D system
only if and/or if the clearance between the ends of the cylinder
and the side walls is very small: in that latter case,
diverges as due to the blockage of the flow. In other cases, the
side flow between the ends of the cylinder and the side walls plays an
important part to reduce : a full 3D description of the flow is
needed to account for these effects
- …
