365 research outputs found

    Gedanken experiments on nearly extremal black holes and the Third Law

    Full text link
    A gedanken experiment in which a black hole is pushed to spin at its maximal rate by tossing into it a test body is considered. After demonstrating that this is kinematically possible for a test body made of reasonable matter, we focus on its implications for black hole thermodynamics and the apparent violation of the third law (unattainability of the extremal black hole). We argue that this is not an actual violation, due to subtleties in the absorption process of the test body by the black hole, which are not captured by the purely kinematic considerations.Comment: v2: minor edits, references added; v3: minor edits to match published versio

    Growth and Demography of the Solitary Scleractinian Coral Leptopsammia pruvoti along a Sea Surface Temperature Gradient in the Mediterranean Sea

    Get PDF
    The demographic traits of the solitary azooxanthellate scleractinian Leptopsammia pruvoti were determined in six populations on a sea surface temperature (SST) gradient along the western Italian coasts. This is the first investigation of the growth and demography characteristics of an azooxanthellate scleractinian along a natural SST gradient. Growth rate was homogeneous across all populations, which spanned 7 degrees of latitude. Population age structures differed between populations, but none of the considered demographic parameters correlated with SST, indicating possible effects of local environmental conditions. Compared to another Mediterranean solitary scleractinian, Balanophyllia europaea, zooxanthellate and whose growth, demography and calcification have been studied in the same sites, L. pruvoti seems more tolerant to temperature increase. The higher tolerance of L. pruvoti, relative to B. europaea, may rely on the absence of symbionts, and thus the lack of an inhibition of host physiological processes by the heat-stressed zooxanthellae. However, the comparison between the two species must be taken cautiously, due to the likely temperature differences between the two sampling depths. Increasing research effort on determining the effects of temperature on the poorly studied azooxanthellate scleractinians may shed light on the possible species assemblage shifts that are likely to occur during the current century as a consequence of global climatic change

    Barriers to sEMG assessment during overground robot-assisted gait training in subacute stroke patients

    Get PDF
    Background: The limitation to the use of ElectroMyoGraphy (sEMG) in rehabilitation services is in contrast with its potential diagnostic capacity for rational planning and monitoring of the rehabilitation treatments, especially the overground Robot-Assisted Gait Training (o-RAGT). Objective: To assess the barriers to the implementation of a sEMG-based assessment protocol in a clinical context for evaluating the effects of o-RAGT in subacute stroke patients. Methods: Anobservationalstudywasconductedinarehabilitationhospital.Theprimary outcome was the success rate of the implementation of the sEMG-based assessment. The number of dropouts and the motivations have been registered. A detailed report on difficulties in implementing the sEMG protocol has been edited for each patient. The educational level and the working status of the staff have been registered.Each member of staff completed a brief survey indicating their level of knowledge of sEMG, using a five-point Likert scale. Results: The sEMG protocol was carried out by a multidisciplinary team composed of Physical Therapists (PTs) and Biomedical Engineers (BEs). Indeed, the educational level andtheexpertiseofthemembersofstaffinfluencedthefulfillmentoftheimplementation of the study.ThePTsinvolved in the study did not receive any for maleducationonsEMG during their course of study. The low success rate (22.7%) of the protocol was caused by several factors which could be grouped in: patient-related barriers; cultural barriers; technical barriers; and administrative barriers. Conclusions: Since a series of barriers limited the use of sEMG in the clinical rehabilitative environment, concrete actions are needed for disseminating sEMG in rehabilitation services. The sEMG assessment should be included in health systems regulations and specific education should be part of the rehabilitation professionals’ curriculum. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03395717

    Influence of Heart Rate on Left and Right Ventricular Longitudinal Strain in Patients with Chronic Heart Failure

    Get PDF
    Over the past years, a number of studies have demonstrated the relevance of strain assessed by two-dimensional speckle tracking echocardiography (STE) in evaluating ventricular function. The aim of this study was to analyze changes in left (LV) and right ventricular (RV) longitudinal strain associated with variations of heart rate (HR) in participants with and without chronic heart failure (CHF). We enrolled 45 patients, 38 of these diagnosed with CHF and carrying an implantable cardioverter defibrillator, and seven patients with pacemakers and without CHF. The frequency of atrial stimulation was increased to 90 beats/min and an echocardiogram was performed at each increase of 10 beats/min. Global LV and RV longitudinal strain (LVGLS and RVGLS, respectively) and RV free wall longitudinal strain (RVfwLS) were calculated at each HR. When analyzed as continuous variables, significant reductions in LVGLS were detected at higher HRs, whereas improvements in both RVGLS and RVfwLS were observed. Patients with a worsening of LVGLS (76% overall) were more likely to present lower baseline LV function. Only a few patients (18% for RVGLS and 16% for RVfwLS) exhibited HR-related deteriorations of RV strain measures, which was associated with lower levels of baseline RV function and higher pulmonary systolic pressures. Finally, 21 (47%) and 25 (56%) participants responded with improvements in RVGLS and RVfwLS, respectively. Our findings revealed heterogeneous RV and LV responses to increases in HR. These findings might ultimately be used to optimize cardiac functionality in patients diagnosed with CHF

    Revival of Philozoon Geddes for host-specialized dinoflagellates, ‘zooxanthellae’, in animals from coastal temperate zones of northern and southern hemispheres

    Get PDF
    The dinoflagellate family Symbiodiniaceae comprises numerous genera and species with large differences in diversity, ecology and geographic distribution. An evolutionarily divergent lineage common in temperate symbiotic cnidarians and designated in the literature by several informal names including ‘temperate–A’, AI, Phylotype A´ (A-prime) and ‘Mediterranean A’, is here assigned to the genus Philozoon. This genus was proposed by Geddes (1882) in one of the earliest papers that recognized ‘yellow cells’ as distinct biological entities separate from their animal and protist hosts. Using phylogenetic data from nuclear (rDNA), chloroplast (cp23S) and mitochondrial genes (cob and cox1), as well as morphology (cell size), ecological traits (host affinity) and geographic distributions, we emend the genus Philozoon Geddes and two of its species, P. medusarum and P. actiniarum, and describe six new species. Each symbiont species exhibits high host fidelity for particular species of sea anemone, soft coral, stony coral and a rhizostome jellyfish. Philozoon is most closely related to Symbiodinium (formerly Clade A), but, unlike its tropical counterpart, occurs in hosts in shallow temperate marine habitats in northern and southern hemispheres including the Mediterranean Sea, north-eastern Atlantic Ocean, eastern Australia, New Zealand and Chile. The existence of a species-diverse lineage adapted to cnidarian hosts living in high latitude habitats with inherently wide fluctuations in temperature calls further attention to the ecological and biogeographic reach of the Symbiodiniaceae

    Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations

    Get PDF
    Spherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO3) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them. In 7 of the 12 species, we observed a skeletal structural motif not observed previously: randomly oriented, equant crystals, which we termed “sprinkles”. In Acropora pharaonis, these sprinkles are localized at the CoCs, while in 6 other species, sprinkles are either layered at the growth front (GF) of the spherulites, or randomly distributed. At the nano- and micro-scale, coral skeletons fill space as much as single crystals of aragonite. Based on these observations, we tentatively propose a spherulite formation mechanism in which growth front nucleation (GFN) of randomly oriented sprinkles, competition for space, and coarsening produce spherulites, rather than the previously assumed slightly misoriented nucleations termed “non-crystallographic branching”. Phase-field simulations support this mechanism, and, using a minimal set of thermodynamic parameters, are able to reproduce all of the microstructural variation observed experimentally in all of the investigated coral skeletons. Beyond coral skeletons, other spherulitic systems, from aspirin to semicrystalline polymers and chocolate, may also form according to the mechanism for spherulite formation proposed here. Statement of Significance: Understanding the fundamental mechanisms of spherulite nucleation and growth has broad ranging applications in the fields of metallurgy, polymers, food science, and pharmaceutical production. Using the skeletons of reef-building corals as a model system for investigating these processes, we propose a new spherulite growth mechanism that can not only explain the micro-structural diversity observed in distantly related coral species, but may point to a universal growth mechanism in a wide range of biologically and technologically relevant spherulitic materials systems

    Gains and losses of coral skeletal porosity changes with ocean acidification acclimation

    No full text
    Ocean acidification is predicted to impact ecosystems reliant on calcifying organisms, potentially reducing the socioeconomic benefits these habitats provide. Here we investigate the acclimation potential of stony corals living along a pH gradient caused by a Mediterranean CO(2) vent that serves as a natural long-term experimental setting. We show that in response to reduced skeletal mineralization at lower pH, corals increase their skeletal macroporosity (features >10 μm) in order to maintain constant linear extension rate, an important criterion for reproductive output. At the nanoscale, the coral skeleton's structural features are not altered. However, higher skeletal porosity, and reduced bulk density and stiffness may contribute to reduce population density and increase damage susceptibility under low pH conditions. Based on these observations, the almost universally employed measure of coral biomineralization, the rate of linear extension, might not be a reliable metric for assessing coral health and resilience in a warming and acidifying ocean

    A neural tracking and motor control approach to improve rehabilitation of upper limb movements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that of lower extremities. For these reasons, researchers are developing new methods and technologies so that the rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES), where the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic information associated with the execution of a planar goal-oriented movement. More specifically, this work details two steps of the proposed system: an <it>ad hoc </it>markerless motion analysis algorithm for the estimation of kinematics, and a neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb.</p> <p>Methods</p> <p>The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position error with respect to the requested arm trajectory and comparison between curvature factors have been calculated in order to determine the accuracy of the system.</p> <p>Results</p> <p>The proposed method has been tested on real data acquired during the execution of planar goal-oriented arm movements. Main results concern the capability of the system to accurately recreate the movement task by providing a synthetic arm model with the stimulation patterns estimated by the inverse dynamics model. In the simulation of movements with a length of ± 20 cm, the model has shown an unbiased angular error, and a mean (absolute) position error of about 1.5 cm, thus confirming the ability of the system to reliably drive the model to the desired targets. Moreover, the curvature factors of the factual human movements and of the reconstructed ones are similar, thus encouraging future developments of the system in terms of reproducibility of the desired movements.</p> <p>Conclusion</p> <p>A novel FES-assisted rehabilitation system for the upper limb is presented and two parts of it have been designed and tested. The system includes a markerless motion estimation algorithm, and a biologically inspired neural controller that drives a biomechanical arm model and provides the stimulation patterns that, in a future development, could be used to drive a smart Functional Electrical Stimulation system (sFES). The system is envisioned to help in the rehabilitation of post stroke hemiparetic patients, by assisting the movement of the paretic upper limb, once trained with a set of movements performed by the therapist or in virtual reality. Future work will include the application and testing of the stimulation patterns in real conditions.</p
    corecore