244 research outputs found

    Noncommutative differential calculus for Moyal subalgebras

    Full text link
    We build a differential calculus for subalgebras of the Moyal algebra on R^4 starting from a redundant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we find a frame of 1-forms which allows to realize the complex of forms as a tensor product of the noncommutative subalgebras with the external algebra Lambda^*.Comment: 13 pages, no figures. One reference added, minor correction

    Discovery of parvovirus-related sequences in an unexpected broad range of animals

    Get PDF
    Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the Parvoviridae family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom

    The spectral action for Moyal planes

    Full text link
    Extending a result of D.V. Vassilevich, we obtain the asymptotic expansion for the trace of a "spatially" regularized heat operator associated with a generalized Laplacian defined with integral Moyal products. The Moyal hyperplanes corresponding to any skewsymmetric matrix Θ\Theta being spectral triples, the spectral action introduced in noncommutative geometry by A. Chamseddine and A. Connes is computed. This result generalizes the Connes-Lott action previously computed by Gayral for symplectic Θ\Theta.Comment: 20 pages, no figure, few improvment

    Coherent coupling dynamics in a quantum dot microdisk laser

    Full text link
    Luminescence intensity autocorrelation (LIA) is employed to investigate coupling dynamics between (In,Ga)As QDs and a high-Q (~7000) resonator with ultrafast time resolution (150 fs), below and above the lasing threshold at T = 5 K. For QDs resonant and non-resonant with the cavity we observe both a six-fold enhancement and a 0.77 times reduction of the spontaneous emission rate, respectively. In addition, LIA spectroscopy reveals the onset of coherent coupling at the lasing threshold through qualitative changes in the dynamic behavior and a tripling of the resonant QD emission rate.Comment: Accepted for publication, Phys. Rev. B Rapid Communications, 11 pages, 4 figure

    Dynamical noncommutativity and Noether theorem in twisted phi^*4 theory

    Full text link
    A \star-product is defined via a set of commuting vector fields X_a = e_a^\mu (x) \partial_\mu, and used in a phi^*4 theory coupled to the e_a^\mu (x) fields. The \star-product is dynamical, and the vacuum solution phi =0, e_a^\mu (x)=delta_a^\mu reproduces the usual Moyal product. The action is invariant under rigid translations and Lorentz rotations, and the conserved energy-momentum and angular momentum tensors are explicitly derived.Comment: 15 pages LaTeX, minor typos, added reference

    Genomic and Evolutionary Features of the SPI-1 Type III Secretion System That Is Present in Xanthomonas albilineans but Is Not Essential for Xylem Colonization and Symptom Development of Sugarcane Leaf Scald

    Get PDF
    Xanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X. albilineans shares only low similarity with other available T3SS SPI-1 sequences. Screening of a collection of 128 plant-pathogenic bacteria revealed that this T3SS SPI-1 is present in only two species of Xanthomonas: X. albilineans and X. axonopodis pv. phaseoli. Inoculation of sugarcane with knockout mutants showed that this system is not required by X. albilineans to spread within xylem vessels and to cause disease symptoms. This result was confirmed by the absence of this T3SS SPI-1 in an X. albilineans strain isolated from diseased sugarcane. To investigate the importance of the T3SS SPI-1 during the life cycle of X. albilineans, we analyzed T3SS SPI-1 sequences from 11 strains spanning the genetic diversity of this species. No nonsense mutations or frameshifting indels were observed in any of these strains, suggesting that the T3SS SPI-1 system is maintained within the species X. albilineans. Evolutionary features of T3SS SPI-1 based on phylogenetic, recombination, and selection analyses are discussed in the context of the possible functional importance of T3SS SPI-1 in the ecology of X. albilineans
    corecore