1,457 research outputs found

    The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling

    Get PDF
    Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies

    AgRISTARS. Supporting research: MARS x-band scatterometer

    Get PDF
    The design, construction, and data collection procedures of the mobile agricultural radar sensor (MARS) x band scatterometer are described. This system is an inexpensive, highly mobile, truck mounted FM-CW radar operating at a center frequency of 10.2 GHz. The antennas, which allow for VV and VH polarizations, are configured in a side looking mode that allows for drive by data collection. This configuration shortens fieldwork time considerably while increasing statistical confidence in the data. Both internal calibration, via a delay line, and external calibration with a Luneberg lens are used to calibrate the instrument in terms of sigma(o). The radar scattering cross section per unit area, sigma(o), is found using the radar equation

    Glutamate and purine catabolites in relation to free radical production during focal ischemia-reperfusion : an in vivo study in cats

    Get PDF
    The in-vivo interrelation between excitotoxicity and oxidative stress following cerebral ischemia in cats was investigated. To elucidate the role of this mechanism in cerebral ischemia, the study presented herein sought to investigate the spatial and temporal features of the free radical response to elevations of glutamate and purine catabolites in a reproducible model of in vivo focal ischemia/reperfusion. The time course of neurochemical and Reactive Oxygen Species (ROS) were simultaneously conducted in ischemic focus and perifocal region of the brain.peer-reviewe

    3114 Optical zone centration of excimer laser photo-refractive keratectomy for myopia relative to the pupil with and without the use of an active eye tracking system

    Get PDF
    Explosive volcanic eruptions can eject large quantities of particulate matter that, along with other aerosol droplets and trace gases, are carried upwards into the atmosphere by the buoyant eruption column and then dispersed by winds aloft. The presence in the atmosphere of volcanic ash is a sporadic yet important factor that can threaten human health, affect the urban built environment, disrupt aerial navigation and, for very large eruptions, alter both atmospheric composition and chemistry. Once volcanic ash is injected into the atmosphere, it can be transported over great distances, even circumnavigating the entire planet. Volcanic ash modeling systems are used to simulate the atmospheric dispersion of volcanic ash and to generate operational short-term forecasts to support civil aviation and emergency management. The efficiency of response and mitigation actions is directly associated to the accuracy of the volcanic ash cloud detection. Volcanic ash modeling systems normally require an emission or source term model to characterize the eruption column; a dispersal model to simulate the atmospheric transport, dispersion and ground deposition of ash particles; and a meteorological model for the description of the atmospheric conditions. Traditional forecasts for volcanic ash build on off-line coupled modeling systems, where meteorological variables are only updated at the specified coupling intervals. Although this approach is computationally advantageous is some cases, there is a concern that it can lead to a number of accuracy issues and limitations that can be corrected by on-line modeling strategies. Despite these concerns, to date, no on-line coupled model is available for operational forecast of volcanic ash. In addition, the quantification of the limitations associated to the off-line systems has received no attention. This Ph.D. thesis describes and evaluates NMMB-MONARCH-ASH, a novel fully coupled on-line multiscale meteorological and atmospheric transport model designed to predict ash cloud trajectories, concentration of ash at relevant flight levels, and the expected deposit thickness for both regional and global domains in research and operational set-ups. The first activity targeted a model validation against several well-characterized events including, the Mt. Etna 2001, Eyjafjallajökull 2010, and Cordón Caulle 2011 eruptions. The model has shown to be robust, scalable, and capable to reproduce the spatial and temporal dispersal variability of the ash cloud and tephra deposits, showing promising results and improving the performance from well-known off-line operational models. The second activity quantified the model shortcomings and systematic errors associated to traditional off-line forecasts employed in operational set-ups. NMMB-MONARCH-ASH demonstrated that off-line forecasts could fail to reproduce up to 45-70% of the ash cloud of an on-line forecast, considered to be the best estimate of the true outcome. The uncertainty associated to off-line systems was found to be as relevant (same order of magnitude) as those uncertainties attributed to the source term. The third activity focused on a global application of NMMB-MONARCH-ASH to analyze the potential impacts of ash dispersal from Antarctic volcanoes. Numerical simulations suggested that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. The last activity included a novel computational inversion method to account, for the first time, for the Plinian and co-ignimbrite phases of the 39 ka Campanian Ignimbrite super-eruption. This particular application employed the off-line coupled FALL3D model, found to be more suitable from a computational point of view. The outcome of this Ph.D. thesis encourages operational groups responsible for real-time advisories for aviation to consider using computationally efficient on-line coupled ash dispersal models.Las erupciones volcánicas explosivas pueden emitir una gran cantidad de material que, junto con otros aerosoles y gases traza, son inyectados en la atmósfera por la columna eruptiva para luego ser dispersados por los vientos en altura. La presencia en la atmósfera de cenizas volcánicas es un factor esporádico aunque importante, que puede llegar a amenazar la salud humana, afectar las infraestructuras urbanas, interrumpir la navegación aérea y, en el caso de grandes erupciones, alterar la composición atmosférica y química. Una vez en la atmósfera, la ceniza puede ser transportada a grandes distancias, llegando incluso a circunnavegar todo el planeta. Los sistemas de modelado de cenizas volcánicas se utilizan para simular la dispersión atmosférica de estas partículas, y para generar pronósticos operacionales a corto plazo empleados para dar soporte a la aviación civil y a la gestión de emergencias. La eficacia para responder a estos eventos está directamente asociada a la precisión de los modelos de transporte de cenizas volcánicas. Los sistemas de modelado de cenizas volcánicas requieren de un modelo de emisión de partículas para la caracterización de la columna eruptiva; un modelo de dispersión para la simulación del transporte atmosférico y la deposición de cenizas; y de un modelo meteorológico para la descripción de las condiciones atmosféricas. Los pronósticos tradicionales se basan en sistemas de modelado desacoplados (off-line), donde las variables meteorológicas sólo se actualizan a intervalos de tiempo especificados. Aunque este enfoque presenta ventajas desde el punto de vista computacional, existe la preocupación de que puede estar asociado a limitaciones y problemas de precisión que, por el contrario, pueden ser corregidos mediante estrategias de modelado acoplado (on-line). A pesar de estas preocupaciones, hasta la fecha no hay un modelo acoplado on-line disponible para el pronóstico operativo de la cenizas volcánicas. Además, tampoco existe una cuantificación de las limitaciones asociadas a los sistemas off-line. Este doctorado describe y evalúa NMMB-MONARCH-ASH, un modelo de transporte meteorológico y atmosférico multiescalar (regional/global) completamente acoplado on-line, para su uso en investigación y predicción operacional. El modelo está diseñado para predecir trayectorias de cenizas volcánicas, concentración de ceniza en niveles de vuelo (flight levels), y el correspondiente espesor de depósito. La primera actividad de esta tesis se centra en la validación de modelo mediante erupciones bien caracterizadas (Mt. Etna 2001, Eyjafjallajökull 2010, y del Cordón Caulle 2011). El modelo ha demostrado ser robusto, escalable y capaz de reproducir la variabilidad de la dispersión espacial y temporal de los depósitos y de las nubes de ceniza, ostrando resultados prometedores y mejorando el rendimiento de modelos operacionales. La segunda actividad cuantifica los errores sistemáticos asociados a los pronósticos off-line. NMMB-MONARCH-ASH demuestra que estps pronósticos podrían no reproducir hasta un 45-70% de la nube de cenizas de un pronóstico on-line, considerado éste último como la mejor estimación de la realidad. Esta actividad concluye que la incertidumbre asociada a los sistemas off-line puede llegar a ser tan relevante como aquellas incertidumbres atribuidas al término fuente. La tercera actividad se centra en una aplicación global de NMMB-MONARCH-ASH para analizar los posibles impactos asociados a la dispersión de ceniza de volcanes antárticos. Los resultados alertan de las posibles consequencias de estas erupciones en la aviación a nivel mundial . La última actividad incluye un nuevo método de inversión computacional para identificar, por primera vez, las fases Pliniana y coignimbrita de la super-erupción de la Ignimbrita Campaniana (39 ka) con FALL3D. Los resultados de este Ph.D. alientan a considerar el uso de modelos acoplados on-line para generar pronósticos operacionales de ceniza volcánica

    One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre

    Full text link
    A quantum chain model of many molecule motors is proposed as a mathematical physics theory on the microscopic modeling of classical force-velocity relation and tension transients of muscle fibre. We proposed quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibre which has no empirical relation yet, it is much more complicate than hyperbolic relation. Using the same Hamiltonian, we predicted the mathematical force-velocity relation when the muscle is stimulated by alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency has a physical understanding by Doppler effect in this quantum chain model. Further more, we apply quantum physics phenomena to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transients curves found their correspondence in the theoretical output of quantum two-level and three-level model. Mathematically modeling electric stimulus as photons exciting a quantum three-level particle reproduced most tension transient curves of water bug Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde

    Promoting Meaningful Partnerships with Lived Experience Experts in High Quality Research: Considerations for Funders

    Get PDF
    For the past several years, the Annie E. Casey Foundation, Casey Family Programs, and the William T. Grant Foundation have funded and worked in close partnership with more than 50 individuals representing a broad array of experts, stakeholders, and people with lived experience to develop a 21st Century Research Agenda for a Child and Family Well-Being System, which comprises the most pressing research gaps that span each aspect of child welfare system involvement, including: community-based family support and maltreatment prevention, child protective services involvement and prevention of family separation, and out-of-home care and post-permanency services. Partnering organizations include Black Administrators in Child Welfare (BACW), the National Indian Child Welfare Association (NICWA), Child Trends Hispanic Institute, the American Public Human Services Association (APHSA), the Child Welfare League of America (CWLA), Social Current, and the American Academy of Social Work and Social Welfare (AASWSW).As part of this effort, a team of six lived experience experts (i.e., individuals with lived experience with the child welfare system—including two young adults with foster care histories, two birth parents, a grandparent/kinship caregiver, and a foster caregiver) have been equal partners in project leadership, serving in various roles related to project development and dissemination, and serving as full voting members of the project's Steering Committee. This type of sustained collaboration is essential for forward movement.Given the unprecedented nature and scale of this partnership, we commissioned a brief describing the partnership process and outlining guidance for funders in supporting meaningful partnerships between researchers and lived experience stakeholders

    The AGN Outflow in the HDFS Target QSO J2233-606 from a High-Resolution VLT/UVES Spectrum

    Full text link
    We present a detailed analysis of the intrinsic UV absorption in the central HDFS target QSO J2233-606, based on a high-resolution, high S/N (~25 -- 50) spectrum obtained with VLT/UVES. This spectrum samples the cluster of intrinsic absorption systems outflowing from the AGN at radial velocities v ~ -5000 -- -3800 km/s in the key far-UV diagnostic lines - the lithium-like CNO doublets and H I Lyman series. We fit the absorption troughs using a global model of all detected lines to solve for the independent velocity-dependent covering factors of the continuum and emission-line sources and ionic column densities. This reveals increasing covering factors in components with greater outflow velocity. Narrow substructure is revealed in the optical depth profiles, suggesting the relatively broad absorption is comprised of a series of multiple components. We perform velocity-dependent photoionization modeling, which allows a full solution to the C, N, and O abundances, as well as the velocity resolved ionization parameter and total column density. The absorbers are found to have supersolar abundances, with [C/H] and [O/H] ~0.5 -- 0.9, and [N/H] ~ 1.1 -- 1.3, consistent with enhanced nitrogen production expected from secondary nucleosynthesis processes. Independent fits to each kinematic component give consistent results for the abundances. The lowest-ionization material in each of the strong absorbers is modeled with similar ionization parameters. Components of higher-ionization (indicated by stronger O VI relative to C IV and N V) are present at velocities just redward of each low-ionization absorber. We explore the implications of these results for the kinematic-geometric-ionization structure of the outflow.Comment: 12 pages, 10 figures, emulateapj, accepted for publication in Ap
    corecore