2,053 research outputs found

    Aktivität, Populationsdynamik und Diversität Methan oxidierender Bakterien im Reisfeld

    Get PDF
    Die Methan oxidierenden Bakterien können durch die Umsetzung von Methan die Emission dieses Treibhausgases aus gefluteten Reisfeldern deutlich verringern. Um nähere Erkenntnisse über die Aktivität und Populationsstruktur der Methanotrophen im Reisfeld zu erhalten, wurden Mikrokosmos- und Feldexperimente durchgeführt. Die Ergebnisse dieser beiden Systeme waren qualitativ gut vergleichbar. Der positive Einfluss der Reiswurzel auf die Methanotrophen war durch die Kompartimentierung im Mikrokosmos deutlicher nachzuweisen als im Feld. Die in­situ Methanoxidation hatte sowohl im Feld als auch im Mikrokosmos nur während der ersten Wochen der Vegetationsperiode Einfluss auf die Methanemissionen. Dagegen blieben die Initialraten in Messungen der potentiellen Methanoxidation in Bodensuspensionen auch nach Abnahme der Aktivität in-situ anhaltend hoch. Dies wies auf eine in-situ Limitierung der Methan oxidierenden Bakterien hin, die auf einen Mangel an leichtverfügbaren Stickstoffverbindungen zurückgeführt werden konnte. Die Zellzahl der Methanotrophen nahm während des Wachstums der Reispflanze besonders in Rhizoplane und Homogenisat der Wurzel, aber auch im durchwurzelten Boden zu. Im Mikrokosmos konnte eine in-situ Dominanz der Typ II Methanotrophen in allen Kompartimenten und über die gesamte Vegetationsperiode nachgewiesen werden. Die Zahl der Typ I Methanotrophen erreichte nur in der Rhizoplane Anteile von bis zu 2/3 der Gesamtpopulation. Die Wurzel ist demnach nicht nur für den Erhalt der Grösse, sondern auch der Diversität der Population wichtig. Im Feldversuch wurden beide Familien in vergleichbaren Zellzahlen nachgewiesen. Die Populationsstruktur wies trotz des Wachstums der Methanotrophen keine ausgeprägten Änderungen auf. Für Typ II wurden beide Gattungen (Methylosinus und Methylocystis) nachgewiesen, während für Typ I nur zur Gattung Methylo-bacter ähnliche Sequenzen gefunden wurden. Die Dominanz von Methylobacter könnte auf einen Selektionsvorteil gegenüber anderen Typ I Gattungen zurück-zuführen sein. Da Reisfelder periodisch trocken gelegt werden, erhalten diejenigen Bodenbakterien einen Vorteil, die Trocknungsstress überstehen können. Methylo-bacter ist die einzige Typ I Gattung mit einem trocknungsresistenten Dauersta-dium und auch beide nachgewiesenen Typ II Gattungen bilden entsprechende Dauerstadien. Diese Fähigkeit ermöglichte es ihnen, im Reisfeld zu überdauern und verdeutlichte so die selektiven Auswirkungen der Physiologie auf die Populationsstruktur der Methan oxidierenden Bakterien

    Two-component radiation model of the sonoluminescing bubble

    Full text link
    Based on the experimental data from Weninger, Putterman & Barber, Phys. Rev. (E), 54, R2205 (1996), we offer an alternative interpretation of their experimetal results. A model of sonoluminescing bubble which proposes that the electromagnetic radiation originates from two sources: the isotropic black body or bramsstrahlung emitting core and dipole radiation-emitting shell of accelerated electrons driven by the liquid-bubble interface is outlined.Comment: 5 pages Revtex, submitted to Phys. Rev.

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure

    Mechanisms for Stable Sonoluminescence

    Get PDF
    A gas bubble trapped in water by an oscillating acoustic field is expected to either shrink or grow on a diffusive timescale, depending on the forcing strength and the bubble size. At high ambient gas concentration this has long been observed in experiments. However, recent sonoluminescence experiments show that in certain circumstances when the ambient gas concentration is low the bubble can be stable for days. This paper presents mechanisms leading to stability which predict parameter dependences in agreement with the sonoluminescence experiments.Comment: 4 pages, 3 figures on request (2 as .ps files

    Nonradiative Electronic Deexcitation Time Scales in Metal Clusters

    Get PDF
    The life-times due to Auger-electron emission for a hole on a deep electronic shell of neutral and charged sodium clusters are studied for different sizes. We consider spherical clusters and calculate the Auger-transition probabilities using the energy levels and wave functions calculated in the Local-Density-Approximation (LDA). We obtain that Auger emission processes are energetically not allowed for neutral and positively charged sodium clusters. In general, the Auger probabilities in small NaN_N^- clusters are remarkably different from the atomic ones and exhibit a rich size dependence. The Auger decay times of most of the cluster sizes studied are orders of magnitude larger than in atoms and might be comparable with typical fragmentation times.Comment: 11 pages, 4 figures. Accepted for publication in Phys. Rev.

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    Casimir Energy for a Spherical Cavity in a Dielectric: Applications to Sonoluminescence

    Get PDF
    In the final few years of his life, Julian Schwinger proposed that the ``dynamical Casimir effect'' might provide the driving force behind the puzzling phenomenon of sonoluminescence. Motivated by that exciting suggestion, we have computed the static Casimir energy of a spherical cavity in an otherwise uniform material. As expected the result is divergent; yet a plausible finite answer is extracted, in the leading uniform asymptotic approximation. This result agrees with that found using zeta-function regularization. Numerically, we find far too small an energy to account for the large burst of photons seen in sonoluminescence. If the divergent result is retained, it is of the wrong sign to drive the effect. Dispersion does not resolve this contradiction. In the static approximation, the Fresnel drag term is zero; on the mother hand, electrostriction could be comparable to the Casimir term. It is argued that this adiabatic approximation to the dynamical Casimir effect should be quite accurate.Comment: 23 pages, no figures, REVTe

    Observability of the Bulk Casimir Effect: Can the Dynamical Casimir Effect be Relevant to Sonoluminescence?

    Get PDF
    The experimental observation of intense light emission by acoustically driven, periodically collapsing bubbles of air in water (sonoluminescence) has yet to receive an adequate explanation. One of the most intriguing ideas is that the conversion of acoustic energy into photons occurs quantum mechanically, through a dynamical version of the Casimir effect. We have argued elsewhere that in the adiabatic approximation, which should be reliable here, Casimir or zero-point energies cannot possibly be large enough to be relevant. (About 10 MeV of energy is released per collapse.) However, there are sufficient subtleties involved that others have come to opposite conclusions. In particular, it has been suggested that bulk energy, that is, simply the naive sum of 12ω{1\over2}\hbar\omega, which is proportional to the volume, could be relevant. We show that this cannot be the case, based on general principles as well as specific calculations. In the process we further illuminate some of the divergence difficulties that plague Casimir calculations, with an example relevant to the bag model of hadrons.Comment: 13 pages, REVTe

    Observation of suppressed terahertz absorption in photoexcited graphene

    Get PDF
    When light is absorbed by a semiconductor, photoexcited charge carriers enhance the absorption of far-infrared radiation due to intraband transitions. We observe the opposite behavior in monolayer graphene, a zero-gap semiconductor with linear dispersion. By using time domain terahertz (THz) spectroscopy in conjunction with optical pump excitation, we observe a reduced absorption of THz radiation in photoexcited graphene. The measured spectral shape of the differential optical conductivity exhibits non-Drude behavior. We discuss several possible mechanisms that contribute to the observed low-frequency non-equilibrium optical response of graphene.United States. Dept. of Energy. Office of Basic Energy Sciences (Grant DE-SC0006423)National Science Foundation (U.S.). Graduate Research Fellowship ProgramUnited States. Air Force Office of Scientific ResearchUnited States. Office of Naval Research. Multidisciplinary University Research Initiative. Graphene Approaches to Terahertz ElectronicsNational Science Foundation (U.S.) (Award DMR-0819762)National Science Foundation (U.S.) (Grant ECS-0335765
    corecore