131 research outputs found
GAIA: Composition, Formation and Evolution of the Galaxy
The GAIA astrometric mission has recently been approved as one of the next
two `cornerstones' of ESA's science programme, with a launch date target of not
later than mid-2012. GAIA will provide positional and radial velocity
measurements with the accuracies needed to produce a stereoscopic and kinematic
census of about one billion stars throughout our Galaxy (and into the Local
Group), amounting to about 1 per cent of the Galactic stellar population.
GAIA's main scientific goal is to clarify the origin and history of our Galaxy,
from a quantitative census of the stellar populations. It will advance
questions such as when the stars in our Galaxy formed, when and how it was
assembled, and its distribution of dark matter. The survey aims for
completeness to V=20 mag, with accuracies of about 10 microarcsec at 15 mag.
Combined with astrophysical information for each star, provided by on-board
multi-colour photometry and (limited) spectroscopy, these data will have the
precision necessary to quantify the early formation, and subsequent dynamical,
chemical and star formation evolution of our Galaxy. Additional products
include detection and orbital classification of tens of thousands of
extra-Solar planetary systems, and a comprehensive survey of some 10^5-10^6
minor bodies in our Solar System, through galaxies in the nearby Universe, to
some 500,000 distant quasars. It will provide a number of stringent new tests
of general relativity and cosmology. The complete satellite system was
evaluated as part of a detailed technology study, including a detailed payload
design, corresponding accuracy assesments, and results from a prototype data
reduction development.Comment: Accepted by A&A: 25 pages, 8 figure
Paper II: Calibration of the Swift ultraviolet/optical telescope
The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard
the Swift observatory. The photometric calibration has been published, and this
paper follows up with details on other aspects of the calibration including a
measurement of the point spread function with an assessment of the orbital
variation and the effect on photometry. A correction for large scale variations
in sensitivity over the field of view is described, as well as a model of the
coincidence loss which is used to assess the coincidence correction in extended
regions. We have provided a correction for the detector distortion and measured
the resulting internal astrometric accuracy of the UVOT, also giving the
absolute accuracy with respect to the International Celestial Reference System.
We have compiled statistics on the background count rates, and discuss the
sources of the background, including instrumental scattered light. In each case
we describe any impact on UVOT measurements, whether any correction is applied
in the standard pipeline data processing or whether further steps are
recommended.Comment: Accepted for publication in MNRAS. 15 pages, 21 figures, 4 table
Digital Image Correlation technique: Application to early fatigue damage detection in stainless steel
In the context of development of a numerical model, to accurately predict the fatigue life of a structural component, it is fundamental to consider both the initiation stage and the propagation stage of micro-cracks. Such a development requires dedicated experimental tools both to provide the physical understanding needed for designing models and to validate the proposed approaches and models. Thus, this paper presents the experimental means that need to be used for such a purpose. The approach is based on the analysis of displacement field measurements by digital image correlation (DIC) during low-cycle fatigue tests. A specific filtering tool is also presented to minimize the committed errors when derivative operation is performed for strain calculation. Therefore, in this quite recent application of DIC, the reproducibility of the method has to be questioned and validated, with help of some more conventional strain measurements devices. It seems that the experimental conditions have to be carefully controlled, so that the results can be interpreted in terms of mechanical phenomena
Hemodynamic parameters to guide fluid therapy
The clinical determination of the intravascular volume can be extremely difficult in critically ill and injured patients as well as those undergoing major surgery. This is problematic because fluid loading is considered the first step in the resuscitation of hemodynamically unstable patients. Yet, multiple studies have demonstrated that only approximately 50% of hemodynamically unstable patients in the intensive care unit and operating room respond to a fluid challenge. Whereas under-resuscitation results in inadequate organ perfusion, accumulating data suggest that over-resuscitation increases the morbidity and mortality of critically ill patients. Cardiac filling pressures, including the central venous pressure and pulmonary artery occlusion pressure, have been traditionally used to guide fluid management. However, studies performed during the past 30 years have demonstrated that cardiac filling pressures are unable to predict fluid responsiveness. During the past decade, a number of dynamic tests of volume responsiveness have been reported. These tests dynamically monitor the change in stroke volume after a maneuver that increases or decreases venous return (preload) and challenges the patients' Frank-Starling curve. These dynamic tests use the change in stroke volume during mechanical ventilation or after a passive leg raising maneuver to assess fluid responsiveness. The stroke volume is measured continuously and in real-time by minimally invasive or noninvasive technologies, including Doppler methods, pulse contour analysis, and bioreactance
Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock.
METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact.
RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring.
CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock
Coronary–aortic interaction during ventricular isovolumic contraction
In earlier work, we suggested that the start of the isovolumic contraction period could be detected in arterial pressure waveforms as the start of a temporary pre-systolic pressure perturbation (AICstart, start of the Arterially detected Isovolumic Contraction), and proposed the retrograde coronary blood volume flow in combination with a backwards traveling pressure wave as its most likely origin. In this study, we tested this hypothesis by means of a coronary artery occlusion protocol. In six Yorkshire × Landrace swine, we simultaneously occluded the left anterior descending (LAD) and left circumflex (LCx) artery for 5 s followed by a 20-s reperfusion period and repeated this sequence at least two more times. A similar procedure was used to occlude only the right coronary artery (RCA) and finally all three main coronary arteries simultaneously. None of the occlusion protocols caused a decrease in the arterial pressure perturbation in the aorta during occlusion (P > 0.20) nor an increase during reactive hyperemia (P > 0.22), despite a higher deceleration of coronary blood volume flow (P = 0.03) or increased coronary conductance (P = 0.04) during hyperemia. These results show that the pre-systolic aortic pressure perturbation does not originate from the coronary arteries
Anesthesia advanced circulatory life support
The constellation of advanced cardiac life support (ACLS) events, such as gas embolism, local anesthetic overdose, and spinal bradycardia, in the perioperative setting differs from events in the pre-hospital arena. As a result, modification of traditional ACLS protocols allows for more specific etiology-based resuscitation.
Perioperative arrests are both uncommon and heterogeneous and have not been described or studied to the same extent as cardiac arrest in the community. These crises are usually witnessed, frequently anticipated, and involve a rescuer physician with knowledge of the patient's comorbidities and coexisting anesthetic or surgically related pathophysiology. When the health care provider identifies the probable cause of arrest, the practitioner has the ability to initiate medical management rapidly.
Recommendations for management must be predicated on expert opinion and physiological understanding rather than on the standards currently being used in the generation of ACLS protocols in the community. Adapting ACLS algorithms and considering the differential diagnoses of these perioperative events may prevent cardiac arrest
Last Men Standing: Chlamydatus Portraits and Public Life in Late Antique Corinth
Notable among the marble sculptures excavated at Corinth are seven portraits of men wearing the long chlamys of Late Antique imperial office. This unusual costume, contemporary portrait heads, and inscribed statue bases all help confirm that new public statuary was created and erected at Corinth during the 4th and 5th centuries. These chlamydatus portraits, published together here for the first time, are likely to represent the Governor of Achaia in his capital city, in the company of local benefactors. Among the last works of the ancient sculptural tradition, they form a valuable source of information on public life in Late Antique Corinth
- …