8,275 research outputs found
J06587-5558 -- A Very Unusual Polarised Radio Source
We have found a peculiar radio source in the field of one of the hottest
known clusters of galaxies 1E0657-56. It is slightly extended, highly polarised
(54% at 8.8GHz) and has a very steep spectrum, with alpha ~ -1 at 1.3 GHz,
steepening to ~ -1.5 at 8.8GHz (S \propto nu^alpha). No extragalactic sources
are known with such high integrated polarisation, and sources with spectra as
steep as this are rare. In this paper, we report the unusual properties of the
source J06587-5558 and speculate on its origin and optical identification.Comment: 5 pages, 6 figures, accepted by MNRAS letter
Analyticity of the SRB measure for a class of simple Anosov flows
We consider perturbations of the Hamiltonian flow associated with the
geodesic flow on a surface of constant negative curvature. We prove that, under
a small perturbation, not necessarely of Hamiltonian character, the SRB measure
associated to the flow exists and is analytic in the strength of the
perturbation. An explicit example of "thermostatted" dissipative dynamics is
constructed.Comment: 23 pages, corrected typo
Tunneling mediated by conical waves in a 1D lattice
The nonlinear propagation of 3D wave-packets in a 1D Bragg-induced band-gap
system, shows that tranverse effects (free space diffraction) affect the
interplay of periodicity and nonlinearity, leading to the spontaneous formation
of fast and slow conical localized waves. Such excitation corresponds to
enhanced nonlinear transmission (tunneling) in the gap, with peculiar features
which differ on the two edges of the band-gap, as dictated by the full
dispersion relationship of the localized waves.Comment: 5 pages, 6 figure
Crossover temperature of Bose-Einstein condensation in an atomic Fermi gas
We show that in an atomic Fermi gas near a Feshbach resonance the crossover
between a Bose-Einstein condensate of diatomic molecules and a Bose-Einstein
condensate of Cooper pairs occurs at positive detuning, i.e., when the
molecular energy level lies in the two-atom continuum. We determine the
crossover temperature as a function of the applied magnetic field and find
excellent agreement with the experiment of Regal et al. [Phys. Rev. Lett. 92,
040403 (2004)] that has recently observed this crossover temperature.Comment: 4 pages, 2 figure
Conductive structures around Las Cañadas caldera, Tenerife (Canary Islands, Spain) : a structural control
External eastern areas of the Las Cañadas caldera (LCC) of Tenerife (Canary Islands, Spain) have been investigated using the audiomagnetotelluric (AMT) method with the aim to characterize the physical rock properties at shallow depth and the thickness of a first resistive layer. Using the results of 50 AMT tensors carried out in the period range of 0.001 s to 0.3 s, this study provides six unpublished AMT profiles distributed in the upper Orotava valley and data from the Pedro Gil caldera (Dorsal Ridge). Showing obvious 1-D behaviour, soundings have been processed through 1-D modeling and gathered to form profiles. Underlying a resistive cover (150-2000 Om), a conductive layer at shallow depth (18-140 Om, 250-1100 m b.g.l.) which is characterized by a "wavy-like" structure, often parallel to the topography, appears in all profiles. This paper points out the ubiquitous existence in Tenerife of such a conductive layer, which is the consequence of two different processes: a) according to geological data, the enhanced conductivity of the flanks is interpreted as a plastic breccia within a clayish matrix generated during huge lateral collapse; and b) along main tectonic structures and inside calderas, this layer is formed by hidrotermal alteration processes. In both areas, the conductive layer is thought to be related to major structural volcanic events (flank or caldera collapse) and can be seen as a temporal marker of the island evolution. Moreover, its slope suggests possible headwall locations of the giant landslides that affected the flanks of Tenerife
Thermodynamics of a Bose-Einstein Condensate with Weak Disorder
We consider the thermodynamics of a homogeneous superfluid dilute Bose gas in
the presence of weak quenched disorder. Following the zero-temperature approach
of Huang and Meng, we diagonalize the Hamiltonian of a dilute Bose gas in an
external random delta-correlated potential by means of a Bogoliubov
transformation. We extend this approach to finite temperature by combining the
Popov and the many-body T-matrix approximations. This approach permits us to
include the quasi-particle interactions within this temperature range. We
derive the disorder-induced shifts of the Bose-Einstein critical temperature
and of the temperature for the onset of superfluidity by approaching the
transition points from below, i.e., from the superfluid phase. Our results lead
to a phase diagram consistent with that of the finite-temperature theory of
Lopatin and Vinokur which was based on the replica method, and in which the
transition points were approached from above.Comment: 11 pages, 5 figure
- …
