9,244 research outputs found

    On O(1) contributions to the free energy in Bethe Ansatz systems: the exact g-function

    Get PDF
    We investigate the sub-leading contributions to the free energy of Bethe Ansatz solvable (continuum) models with different boundary conditions. We show that the Thermodynamic Bethe Ansatz approach is capable of providing the O(1) pieces if both the density of states in rapidity space and the quadratic fluctuations around the saddle point solution to the TBA are properly taken into account. In relativistic boundary QFT the O(1) contributions are directly related to the exact g-function. In this paper we provide an all-orders proof of the previous results of P. Dorey et al. on the g-function in both massive and massless models. In addition, we derive a new result for the g-function which applies to massless theories with arbitrary diagonal scattering in the bulk.Comment: 28 pages, 2 figures, v2: minor corrections, v3: minor corrections and references adde

    Numerical instability of the Akhmediev breather and a finite-gap model of it

    Full text link
    In this paper we study the numerical instabilities of the NLS Akhmediev breather, the simplest space periodic, one-mode perturbation of the unstable background, limiting our considerations to the simplest case of one unstable mode. In agreement with recent theoretical findings of the authors, in the situation in which the round-off errors are negligible with respect to the perturbations due to the discrete scheme used in the numerical experiments, the split-step Fourier method (SSFM), the numerical output is well-described by a suitable genus 2 finite-gap solution of NLS. This solution can be written in terms of different elementary functions in different time regions and, ultimately, it shows an exact recurrence of rogue waves described, at each appearance, by the Akhmediev breather. We discover a remarkable empirical formula connecting the recurrence time with the number of time steps used in the SSFM and, via our recent theoretical findings, we establish that the SSFM opens up a vertical unstable gap whose length can be computed with high accuracy, and is proportional to the inverse of the square of the number of time steps used in the SSFM. This neat picture essentially changes when the round-off error is sufficiently large. Indeed experiments in standard double precision show serious instabilities in both the periods and phases of the recurrence. In contrast with it, as predicted by the theory, replacing the exact Akhmediev Cauchy datum by its first harmonic approximation, we only slightly modify the numerical output. Let us also remark, that the first rogue wave appearance is completely stable in all experiments and is in perfect agreement with the Akhmediev formula and with the theoretical prediction in terms of the Cauchy data.Comment: 27 pages, 8 figures, Formula (30) at page 11 was corrected, arXiv admin note: text overlap with arXiv:1707.0565

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions

    Get PDF
    We show how a proper use of the Lippmann–Schwinger equation simplifies the calculations to obtain scattering states for one dimensional systems perturbed by N Dirac delta equations. Here, we consider two situations. In the former, attractive Dirac deltas perturbed the free one dimensional Schrödinger Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For completeness, we show that the method to obtain bound states use comparable formulas, although not based on the Lippmann–Schwinger equation. Then, the attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain explicit expressions for the scattering wave functions. Here, we need regularisation techniques that we implement via heat kernel regularisation

    Solubilities of sub- and supercritical carbon dioxide in polyester resins

    Get PDF
    In supercritical carbon dioxide (CO2) assisted polymer processes the solubility of CO2 in a polymer plays a vital role. The higher the amount of CO2 dissolved in a polymer the higher is the viscosity reduction of the polymer. Solubilities Of CO2 in polyester resins based on propoxylated bisphenol (PPB) and ethoxylated bisphenol (PEB) have been measured using a magnetic suspension balance at temperatures ranging from 333 to 420 K and pressures up to 30 MPa. An optical cell has been used to independently determine the swelling of the polymers, which has been incorporated in the buoyancy correction. In both polyester resins, the solubility of CO, increases with increasing pressure and decreasing temperature as a result of variations in CO, density. The experimental solubility has been correlated to the Sanchez-Lacombe equation of state.</p

    Joining the conspiracy? Negotiating ethics and emotions in researching (around) AIDS in southern Africa

    Get PDF
    AIDS is an emotive subject, particularly in southern Africa. Among those who have been directly affected by the disease, or who perceive themselves to be personally at risk, talking about AIDS inevitably arouses strong emotions - amongst them fear, distress, loss and anger. Conventionally, human geography research has avoided engagement with such emotions. Although the ideal of the detached observer has been roundly critiqued, the emphasis in methodological literature on 'doing no harm' has led even qualitative researchers to avoid difficult emotional encounters. Nonetheless, research is inevitably shaped by emotions, not least those of the researchers themselves. In this paper, we examine the role of emotions in the research process through our experiences of researching the lives of 'Young AIDS migrants' in Malawi and Lesotho. We explore how the context of the research gave rise to the production of particular emotions, and how, in response, we shaped the research, presenting a research agenda focused more on migration than AIDS. This example reveals a tension between universalised ethics expressed through ethical research guidelines that demand informed consent, and ethics of care, sensitive to emotional context. It also demonstrates how dualistic distinctions between reason and emotion, justice and care, global and local are unhelpful in interpreting the ethics of research practice

    A soliton menagerie in AdS

    Full text link
    We explore the behaviour of charged scalar solitons in asymptotically global AdS4 spacetimes. This is motivated in part by attempting to identify under what circumstances such objects can become large relative to the AdS length scale. We demonstrate that such solitons generically do get large and in fact in the planar limit smoothly connect up with the zero temperature limit of planar scalar hair black holes. In particular, for given Lagrangian parameters we encounter multiple branches of solitons: some which are perturbatively connected to the AdS vacuum and surprisingly, some which are not. We explore the phase space of solutions by tuning the charge of the scalar field and changing scalar boundary conditions at AdS asymptopia, finding intriguing critical behaviour as a function of these parameters. We demonstrate these features not only for phenomenologically motivated gravitational Abelian-Higgs models, but also for models that can be consistently embedded into eleven dimensional supergravity.Comment: 62 pages, 21 figures. v2: added refs and comments and updated appendice

    Lifshitz spacetimes from AdS null and cosmological solutions

    Full text link
    We describe solutions of 10-dimensional supergravity comprising null deformations of AdS5×S5AdS_5\times S^5 with a scalar field, which have z=2z=2 Lifshitz symmetries. The bulk Lifshitz geometry in 3+1-dimensions arises by dimensional reduction of these solutions. The dual field theory in this case is a deformation of the N=4 super Yang-Mills theory. We discuss the holographic 2-point function of operators dual to bulk scalars. We further describe time-dependent (cosmological) solutions which have anisotropic Lifshitz scaling symmetries. We also discuss deformations of AdS×XAdS\times X in 11-dimensional supergravity, which are somewhat similar to the solutions above. In some cases here, we expect the field theory duals to be deformations of the Chern-Simons theories on M2-branes stacked at singularities.Comment: Latex, 29pgs, v3. references, minor clarifications (subsection on Lifshitz geometry seen by scalar probes) added, to appear in JHE
    corecore