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1 Introdu
tionThe study of the thermodynami
s of one dimensional integrable models with fa
torizeds
attering dates ba
k to the seminal work of Yang and Yang [1, 2℄. Their method, knowntoday as the Thermodynami
 Bethe Ansatz (TBA) is quite general and it was worked outfor a large number of models relevant to 
ondensed matter physi
s [3℄. In its simplestformulation the TBA is written down for periodi
 boundary 
onditions and it provides thefree energy density, ie. the O(L) part of the free energy.In this paper we study the sub-leading pie
es of the free energy for di�erent boundary
onditions in 
ontinuum models. We restri
t ourselves to theories with diagonal s
attering;however it is expe
ted, that the proposed methods will work even in the non-diagonal 
ase.1In this paper we fo
us mainly on relativisti
 theories.In integrable relativisti
 �eld theory the TBA was introdu
ed by Al. Zamolod
hikovin [4℄; soon thereafter it be
ame one of the 
entral tools to study �nite size e�e
ts. In1See the related 
omments in the Con
lusions (se
tion 6).� 1 �
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relativisti
 models Eu
lidean invarian
e implies that the free energy density at �nite tem-perature is dire
tly related to the exa
t ground state energy in �nite volume. Studyingthis quantity it is possible to re
over the behaviour around the �xed points of the renor-malization group �ow, whi
h are usually given by a 
onformal �eld theory. Thus the TBAprovides a link between the s
attering theory (IR) and perturbed CFT (UV) des
riptionof the same model: it predi
ts the 
entral 
harge, the s
aling dimensions of the perturbingoperator, and various other quantities [4�6℄.The te
hniques of integrability 
an be applied to problems with non-trivial integrableboundary 
onditions; in relativisti
 s
attering theory the foundations were laid down in [7℄.One obje
t of parti
ular interest is the exa
t g-fun
tion, whi
h is the o�-
riti
al generaliza-tion of the non-integer ground state degenera
y of 
riti
al boundary 
onditions introdu
edby A�e
k and Ludwig in the 
ontext of the Kondo model [8℄. The g-fun
tion des
ribesthe O(1) 
ontribution of a single boundary to the free energy and it 
an be used to studyrenormalization group �ows in the spa
e of boundary �eld theories [9, 10℄. In [11℄ it wasshown that the g-fun
tion satis�es a gradient formula, from whi
h it follows that in unitarytheories the boundary entropy monotoni
ally de
reases under the RG �ow. This is the
g-theorem, whi
h 
an be regarded as the boundary-
ounterpart of the 
elebrated c-theoremby A. B. Zamolod
hikov [12℄.It is an old and very natural idea to determine the g-fun
tion in the framework ofthe Thermodynami
 Bethe Ansatz. The �rst result appeared in [13℄, where the authorsproposed a simple formula based on the boundary-dependen
e of the Bethe equations.Later it was found in [10℄ that although the results of [13℄ 
orre
tly des
ribe the boundary-dependen
e of the g-fun
tion, a boundary-independent term has to be added in order tomat
h the predi
tions of CFT. The missing pie
e was derived in [14℄ using a 
luster ex-pansion for the free energy; the exa
t result was expressed in terms of the solution of theTBA with periodi
 boundary 
onditions. While this exa
t g-fun
tion su

essfully passed anumber of non-trivial tests [14, 15℄ and re
ently it was generalized to des
ribe a massless�ow in [16℄, the interpretation of the boundary-independent terms remained un
lear.A remarkable attempt to obtain the non-extensive pie
es to the free energy of BetheAnsatz systems was performed in [17℄, where it was shown that the quadrati
 �u
tuationsaround the saddle point solution yield a well-de�ned O(1) pie
e. However, the 
al
ula-tion of [17℄ seemed to 
ontradi
t all previous results: it did not reprodu
e the boundary-independent term of [14℄, moreover it predi
ted an O(1) pie
e even in the periodi
 
asewhere no su
h term is expe
ted.In this paper we revisit the 
al
ulations of [17℄ and argue that the only �aw of [17℄ isthat it did not take into a

ount the non-trivial density of states in the 
on�guration spa
eof Bethe Ansatz systems. In other words, the fun
tional integral for the partition fun
tionwas built on an in
orre
t integration measure. We propose a new normalization based onthe thermodynami
 behaviour of the density of states and we obtain the 
orre
t results inall previously 
onsidered 
ases.The paper is organized as follows. In the next subse
tion we provide the ne
essaryde�nitions for the g-fun
tion of relativisti
 boundary �eld theory. Se
tion 2 serves as awarm-up: we 
onsider general Bethe Ansatz systems and the behaviour of the density� 2 �
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torial representation of the two 
hannels for the evaluation of the 
ylinder partitionfun
tion. The (imaginary) time evolution is generated in the verti
al dire
tion by the 
orrespondingHamiltonians.of states in the thermodynami
 limit. In. se
tion 2.2 we revisit the 
al
ulations of [13℄and show that it is possible to obtain the boundary-independent part of the g-fun
tionby a simple heuristi
 argument. Motivated by these �ndings in se
tion 3 we present ageneral framework to evaluate all O(1) pie
es to the free energy. These formal results arethen evaluated expli
itly in massive and massless relativisti
 models in se
tions 4 and 5,respe
tively. Finally se
tion 6 in
ludes our 
on
lusions.1.1 The exa
t g-fun
tion � de�nitionsThe exa
t g-fun
tion 
an be de�ned as follows [13, 14℄. We restri
t ourselves to the simplest
ase with only one massive parti
le in the spe
trum; the generalization to other modelsis straightforward.Let us 
onsider a �nite 
ylinder with height L and 
ir
umferen
e R (�gure 1). Theintegrable boundaries a and b are pla
ed on the two ends of the 
ylinder. The partitionfun
tion 
an be evaluated in two di�erent 
hannels. Viewing R as the dire
tion of time(�gure 1(a)) one obtains
Zab(R,L) = Tr e−Hab(L)R =

∑

ψ

e−E
ab
ψ

(L)R, (1.1)where Hab(L) is the Hamiltonian of the open system of size L with integrable boundary
onditions des
ribed by the re�e
tion fa
tors Ra(θ) and Rb(θ). The summation runs overa 
omplete set of states and Eabψ (L) are the eigenvalues of the Hamiltonian Hab(L).On the other hand, one 
an use L as the time variable (�gure 1(b)). In this pi
turethe boundaries play the role of initial and �nal states of the time-evolution operator H(R),whi
h is the Hamiltonian of the system of size R with periodi
 boundary 
onditions. Inthis 
hannel the partition fun
tion is evaluated as
Zab(R,L) = 〈Ba|e

−H(R)L|Bb〉 =
∑

ψ

(

Gψa (R)
)∗
Gψb (R)e−Eψ(R)L (1.2)

� 3 �
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Here |Ba〉 and |Bb〉 are the boundary states 
orresponding to the boundary 
onditions [7℄and the summation runs over a 
omplete set of states of the periodi
 b
. system. Theamplitudes GΨ
a,b(R) are de�ned as the normalized overlaps

Gψj (R) =
〈ψ|Bj〉
√

〈ψ|ψ〉
, j = a, b (1.3)Equations (1.1) and (1.2) have to be 
ontrasted with the de�nition of the partition fun
tionwith periodi
 boundary 
onditions in both dire
tion:

Z(R,L) = Tr e−H(R)L =
∑

ψ

e−E
ψ(R)L = Z(L,R) (1.4)If mL≫ 1 then (1.2) and (1.4) are dominated by the ground state with energy

E0(R) = ǫR+ O(e−mR),where ǫ is the bulk energy density, whi
h 
an be determined by 
omparing the TBA resultsto 
onformal perturbation theory [4�6℄.Similarly, if mR ≫ 1 then (1.1) is dominated by the ground state of the boundarysystem with energy
Eab0 (L) = ǫL+ fa + fb + O(e−mL),where fa and fb are non-extensive boundary-
ontributions whi
h 
an be obtained from theboundary TBA [9, 13℄.Comparing (1.1) and (1.2) in the regime mL,mR≫ 1 one �nds

G0
j (R) = e−fjR

(

1 + O(e−mR)
)

, j = a, bThe g-fun
tion is then traditionally de�ned as
G0
j (R) = e−fjRgj(R), j = a, bIt follows from dimensional arguments that the g-fun
tion depends on r = mR only. It isuseful to re-de�ne the partition fun
tions as

Z̃(R,L) =
∑

ψ

e−(Eψ(L)−ǫL)R (1.5)
Z̃ab(R,L) =

∑

ψ

e−(Eab
ψ

(L)−fa−fb−ǫL)R (1.6)With this pres
ription the va
uum energies have the asymptoti
s
lim
L→∞

Eab0 (L) = lim
L→∞

E0(L) = 0,and the ex
ited state energies are 
al
ulated additively in the Bethe Ansatz pi
ture. The
g-fun
tion is then given by the limit

log ga(r)gb(r) = lim
L→∞

(

log Z̃ab(R,L) − log Z̃(R,L)
) (1.7)

� 4 �
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Our goal is the evaluation of the partition fun
tions (1.5) and (1.6) in the framework of theThermodynami
 Bethe Ansatz, with a spe
ial emphasize on the overall normalization. Theexa
t g-fun
tion will be determined by the relation above.We would like to remind the reader that in relativisti
 s
attering theories the BetheAnsatz does not provide an exa
t des
ription of the spe
trum. In fa
t there are exponen-tially de
aying residual �nite size e�e
ts, whi
h modify the multi-parti
le energies obtainedfrom the Bethe Ansatz [18, 19℄. In the 
onventional derivation of the TBA these 
ontri-butions are negle
ted; this is 
ertainly a good approximation in the dilute regime, wherethe average distan
e between the parti
les is mu
h larger than their Compton-wavelengths.However, it 
an be argued that the TBA yields the 
orre
t results at any temperatures andany densities [20℄. In this paper we develop arguments about the thermodynami
 behaviourof 
ertain Bethe Ansatz quantities. We do not use any spe
ial assumptions other than thosealready used in the derivation of the TBA. Therefore we may negle
t exponential 
orre
-tions; this assumption will be justi�ed by the results, whi
h are in agreement with the CFTresults in the UV (high temperature) limit.2 Thermodynami
 Bethe Ansatz and density of statesLet us 
onsider Bethe Ansatz systems with one parti
le type and no internal degrees offreedom. We use the rapidity variable θ to parametrize the states. The s
attering isassumed to be elasti
 and fa
torizing; the two-parti
le s
attering is des
ribed by the purephase
S(θi − θj) = eiϑ(θi−θj)Energy and momentum are given by the fun
tions e(θ) and p(θ). In relativisti
 �eld theories

e(θ) = m cosh θ p(θ) = m sinh θwhereas in the non-relativisti
 
ase we have
e(θ) =

m

2
θ2 p(θ) = mθAlternatively, one 
an introdu
e a 
hemi
al potential a

ording to

e(θ) → e(θ) − µIn the relativisti
 
ase we always set µ = 0.Consider the Bethe-Yang quantization of an N -parti
le state in �nite volume L withperiodi
 boundary 
onditions:
eipjL

∏

k 6=j

S(θj − θk) = 1, j = 1 . . . N,where pj = p(θj). In the logarithmi
 form:
Qj = pjL+

∑

k 6=j

ϑ(θj − θk) = 2πIj j = 1 . . . N, Ij ∈ Z (2.1)
� 5 �
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We assume that the quantum numbers {I1, . . . , IN} 
ompletely 
hara
terise the state andthat the solutions 
onsist of purely real rapidities, ie. we do not 
onsider theories with string-like solutions. Moreover, we assume that the solutions of (2.1) span the whole Hilbert-spa
e.The multi-parti
le energies 
an be 
al
ulated additively:
E
[

{I1, . . . , IN}
]

=

N
∑

j=1

e(θj)The solutions of (2.1) are pla
ed evenly in the spa
e of the quantum numbers. Inrapidity spa
e one 
an de�ne the density of states as
ρN (θ1, . . . , θN ) = detJ , Jik =

∂Qi
∂θkAlternatively, this 
an be interpreted as the norm of the Bethe Ansatz state [21℄.In the presen
e of integrable boundaries the quantization 
onditions 
an be written as

ei2pjLRa(θj)Rb(θj)
∏

k 6=j

S(θj − θk)S(θj + θk) = 1, j = 1 . . . N, θj > 0 (2.2)or̄
Qj = 2pjL+ ϑa(θj) + ϑb(θj) +

∑

k 6=j

ϑ(θj − θk) + ϑ(θj + θk) = 2πIj , j = 1 . . . N, θj > 0where Ra,b(θ) = eiϑa,b(θ) are the elasti
 re�e
tion fa
tors of the boundaries. The density ofstates is de�ned as
ρ̄N (θ1, . . . , θN ) = det J̄ , J̄ ik =

∂Q̄i
∂θkWe will be interested in the thermodynami
 behaviour of ρN and ρ̄N . These quantitieswill play an important role in the normalization of the partition fun
tion in 2.2 and in thegeneral treatment of se
tion 3.If the parti
le number is kept �xed and the volume is sent to in�nity, then the densitiesbehave as LN . In parti
ular

ρN , ρ̄N ∼
(

1 + O(L−1)
)

×
N
∏

j=1

(

2πσ(θj)L
)where σ(θ) = p′(θ)/2π. Note that although the leading pie
e is the same for ρN and ρ̄N , thesub-leading terms are in general di�erent. An important property is that the 
oe�
ient ofthese O(L−1) term grows linearly with N . Therefore it is expe
ted that if both L and N goto in�nity with their ratios �xed, then the densities will have a non-trivial thermodynami
limit, whi
h is expe
ted to be di�erent for ρN and ρ̄N . In this limit all higher order termsof O(L−n) 
ontribute.In the following we 
onsider the parti
ular 
ase when the state in question is a �nite-volume mi
ro-
anoni
al realization of an in�nite volume thermal state. In other words,� 6 �
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we send N and L to in�nity with their ratios �xed, and we 
hoose the distribution ofBethe-Ansatz roots a

ording to some Thermodynami
 Bethe Ansatz equation.As a starting point we brie�y review the basi
 notions of the TBA. In the thermody-nami
 limit we introdu
e the total density of states2 ρ(θ) and also the density of o

upiedstates ρ(o)(θ). The parti
le density is given by the integral
n =

N

L
=

∫

dθ ρ(o)(θ)In the periodi
 
ase the densities satisfy the 
onstraint
ρ(θ) =

1

2π
σP (θ) +

∫ ∞

−∞

dθ′

2π
ϕ(θ − θ′)ρ(o)(θ′), (2.3)where ϕ = −i ddθ logS(θ) and σP (θ) = dp/dθ. On the other hand, in the boundary 
ase wehave θ > 0 and the densities satisfy the 
onstraint

ρ(θ) =
1

2π
σab(θ) +

∫ ∞

0

dθ′

2π

(

ϕ(θ − θ′) + ϕ(θ + θ′)
)

ρ(o)(θ′) (2.4)where now
σab(θ) =

d

dθ

(

2p(θ) − i
1

L
logRab(θ)

)

− 2πδ(θ) (2.5)where Rab(θ) = Ra(θ)Rb(θ)S(−2θ) and the extra term 
ontaining δ(θ) was introdu
ed to
an
el the unphysi
al solutions 
orresponding to θ = 0.It is known, that the the distribution of roots is given in both 
ases by the thermody-nami
 Bethe Ansatz equations
Tε(θ) = e(θ) − T

∫ ∞

−∞

dθ′

2π
ϕ(θ − θ′) log(1 + e−ε(θ

′)), (2.6)where we introdu
ed the pseudo-energy as
ρ(θ)

ρ(o)(θ)
= 1 + eε(θ) (2.7)2.1 The thermodynami
 limit of the densities ρN and ρ̄NThe 
al
ulations will be based on the te
hniques developed in the Algebrai
 Bethe Ansatzliterature, see for example appendix A in [22℄.In the periodi
 
ase the matrix elements of J read

Jik = δik

(

LσP (θi) +

N
∑

j=1

ϕ(θi − θj)

)

− ϕ(θi − θj)2We use the term �density� for both ρN and ρ(θ), ρ(o)(θ). However, these quantities have a very di�erentmeaning: ρ(θ) and ρo(θ) des
ribe the distribution of roots within one 
on�guration, whereas ρN des
ribesthe density of states in the (thermodynami
 dimensional) 
on�guration spa
e.� 7 �
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The matrix J 
an be written as the produ
t
J = GΘ, where

Θij = δijγj , Gij = δij −
ϕ(θij)

γj
and

γj = LσP (θj) +

N
∑

i=1

ϕ(θij) (2.8)With this notation
ρN = detGN detΘNIn the L→ ∞ limit we have from (2.3)
γj → 2πLρ(θj)The elements of GN 
an be written asymptoti
ally as

Gij = δij −
1

2πL

ϕ(θij)

ρ(θj)Using (2.7) we 
on
lude that the limit of detGij is given by the Fredholm determinant
det
(

1̂ − P̂−
) (2.9)where P̂− is an integral operator a
ting as

(

P̂−(f)
)

(x) =

∫ ∞

−∞

dy

2π
ϕ(x− y)

1

1 + eε(y)
f(y) (2.10)Therefore

ρN ⇒ det
(

1̂ − P̂−
)

×
N
∏

j=1

2πLρ(θj) (2.11)The Fredholm determinant (2.9) is well-de�ned if the operator P̂− is tra
e 
lass. This 
anbe 
he
ked expli
itly in non-relativisti
 situations [21℄, or in massive relativisti
 models atlow temperatures, where Tr((P̂−
)†
P̂−
)

∼ O(e−2m/T ).Here and in the rest of the paper we will assume that the Fredholm determinants ween
ounter are always well-de�ned. Even if this is not the 
ase, they 
ould be made regularby introdu
ing a rapidity 
ut-o�. This 
ut-o� would not a�e
t the �nal results, be
ausethe O(1) pie
es of the free energy will be expressed as integral series whi
h are well-de�nedfor arbitrary temperatures.Now we turn to the 
al
ulation of ρ̄N . In this 
ase the matrix elements of the Ja
obianread
J̄ik = δik

(

Lσab(θi) +

N
∑

j=1

(

ϕ(θi − θj) + ϕ(θi + θj)
)

)

−
(

ϕ(θi − θj) − ϕ(θi + θj)
)

� 8 �
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The matrix 
an be written as
J̄ = ḠΘ̄, with

Θ̄ij = δij γ̄j , Ḡij = δij −
ϕ(θi − θj) − ϕ(θi + θj)

γj
,where now

γj = Lσab(θj) +
N
∑

i=1

(

ϕ(θi − θj) + ϕ(θi + θj)
) (2.12)The quantities γj have the same thermodynami
 limit as in the periodi
 
ase:

γj → 2πLρ(θj)In the thermodynami
 limit one �nds
ρ̄N ⇒ det

(

1̂ − Q̂−
)

×
N
∏

j=1

2πLρ(θj), (2.13)where Q̂− a
ts on fun
tions de�ned on R
+ as

(

Q̂−(f)
)

(x) =

∫ ∞

0

dy

2π

(

ϕ(x− y) − ϕ(x+ y)
) 1

1 + eε(y)
f(y) (2.14)Noti
e that the leading parts of (2.11) and (2.13) have the same form, however the pre-fa
tors are di�erent. This will play an important role in the next subse
tion.2.2 A heuristi
 derivation of the g-fun
tion (massive 
ase)Here we revisit the 
al
ulation of [13℄ to determine the exa
t g-fun
tion in massive rela-tivisti
 boundary QFT. We obtain obtain the 
orre
t boundary independent part of the

g-fun
tion using a simple heuristi
 argument.In se
tion 4 of [13℄ the authors start with the quantization 
onditions for N parti
les3
ei2mL sinh θjRa(θj)Rb(θj)

∏

k 6=j

S(θj − θk)S(θj + θk) = 1, j = 1 . . . N, θj > 0 (2.15)This 
an be written alternatively as a quantization 
ondition for 2n parti
les:
ei2mL sinh θjR(θi)

∏

k 6=j

S(θj − θk) = 1, j = 1 . . . 2n (2.16)with the additional 
onstraint
θ2n−j = −θj (2.17)The fun
tion R(θ) in (2.16) is de�ned as

R(θ) = Ra(θ)Rb(θ)S(−2θ),3In [13℄ (and also in [14℄) the roles of L and R are swit
hed as opposed to our 
onventions.� 9 �
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In [13℄ the authors use (2.16) as a starting point to derive the thermodynami
s. Theyshow that (2.16) yields the usual periodi
-boundary-
onditions TBA and derive a single
O(1) 
orre
tion to the free energy:

log(gagb) =
1

4π

∫ ∞

−∞

dθ Θab(θ) log
(

1 + e−ε(θ)
) (In
omplete) (2.18)where

Θab(θ) = −i
d

dθ
logR(θ) − 2πδ(θ)where the term δ(θ) is introdu
ed to 
an
el the unphysi
al states whi
h do not respe
t thePauli-prin
iple. This result was shown to be in
omplete in [10, 14℄.We believe that the derivation in [13℄ is 
orre
t in every respe
t but one. There itwas assumed that the 
hange from system (2.15) to (2.16)�(2.17) is trivial. However,the previous subse
tion shows that the density of states of the two BA systems behavesdi�erently in the thermodynami
 limit. In fa
t, the periodi
 system with 2N parti
les hasa density

ρ2N ∼ det
(

1̂ − P̂−
)

×
2N
∏

j=1

2πLρ(θj)whereas the two 
opies of the boundary systems with N parti
les have a density
(

ρ̄N

)2
∼ det2

(

1̂ − Q̂−
)

×
2N
∏

j=1

2πLρ(θj)In other words, there is a �nite ratio between the (thermodynami
 dimensional) densities:
(

ρ̄N
)2

ρ2N
∼

det2
(

1̂ − Q̂−
)

det
(

1̂ − P̂−
) (2.19)This fa
tor does not grow with the volume L, therefore it does not a�e
t the thermody-nami
 limit of the distribution of roots. This means that passing from the system (2.15)to (2.16)�(2.17) the saddle point will not be 
hanged and the distribution of roots will bedes
ribed indeed by the periodi
-boundary-
onditions TBA. However, a �nite fa
tor for thedensity of states has to be kept in order to have a dire
t 
omparison between the partitionfun
tions. In other words, the ratio (2.19) has to be in
luded in the overall normalizationof the partition fun
tion of the boundary system.It is useful to expli
itly evaluate this �nite fa
tor. We start by employing the identity

det
(

1̂ − K̂
)

= exp

{

−
∞
∑

n=1

1

n
TrKn

} (2.20)whi
h is valid for any Fredholm-determinant. In the present 
ase we have
(

ρ̄N
)2

ρ2N
⇒ A =

det2
(

1̂ − Q̂−
)

det
(

1̂ − P̂−
) = exp

{

∞
∑

n=1

1

n

(

2Tr(P−)
n
−Tr(Q−)

n
)

} (2.21)
� 10 �
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Noti
e that the kernels P− and Q− have di�erent support. In 
an be 
he
ked order byorder, that the above formula results in
logA=

∞
∑

n=1

1

n

∫ ∞

−∞

dθ1
2π

. . .

∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1+eε(θi)

)

ϕ(θ1+θ2)ϕ(θ2−θ3) . . . ϕ(θn−θ1) (2.22)Adding this 
onstant to (2.18) one �nds
log(ga) =

1

4π

∫ ∞

−∞

dθ Θaa(θ) log
(

1 + e−ε(θ)
)

+
1

2
logA (2.23)where

Θaa(θ) = ϕa(θ) − ϕ(2θ) − πδ(θ), ϕa(θ) = −i
d

dθ
logRa(θ)This is the exa
t non-perturbative g-fun
tion as obtained in [14℄. We wish to note that theequivalen
e of (2.21) and (2.22) was already observed in [15℄.This derivation does not take into a

ount the �u
tuations around the saddle point,whi
h are expe
ted to give a non-extensive 
ontribution [17℄. However, equation (2.16)already looks like a periodi
 b
. quantization (with an additional fa
tor) and it is generallya

epted, that there is no O(1) pie
e in the periodi
 
ase. This implies that eq. (2.23)already takes into a

ount all O(1) 
ontributions, ie. there are no additional terms due tothe �u
tuations.The reader may be 
on
erned that our arguments are not 
onvin
ing and that the pro-posed re-normalization might be di
tated by the result itself. We agree that our derivationof (2.23) is 
ertainly not rigorous, however, it already shows that the density of states playan important role in the de�nition of the partition fun
tion. In the next se
tion we presenta general 
al
ulation built on �rst prin
iples, whi
h properly takes into a

ount both thedensity of states and the �u
tuations around the saddle point. In the massive 
ase weobtain the same result (2.23).3 O(1) pie
es to the free energy � formal derivationIn this se
tion we present a general framework to determine the O(1) pie
es to the freeenergy. We 
onsider Bethe-Ansatz systems with one parti
le type and one rapidity variable

θ whi
h takes its values from a domain B. The Bethe-Yang equations are assumed to takethe form
eiQj(θ1,...,θN ) ≡ eiαpjLRBY(θj)

∏

k 6=j

SBY(θj , θk) = 1 (3.1)where pj = p(θj). The pure number α and the phases RBY(θj) and SBY(θj , θk) depend onthe problem at hand. In massive relativisti
 models (or arbitrary non-relativisti
 models)with periodi
 boundary 
onditions we have
α = 1 RBY(θ) = 1

SBY(θj, θk) = S(θj − θk)� 11 �
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In the 
ase of integrable integrable boundaries
α = 2 RBY(θ) = Ra(θ)Rb(θ)

SBY(θj , θk) = S(θj − θk)S(θj + θk)For the treatment of massless relativisti
 models see se
tion 5. It is assumed that theunitarity 
ondition is satis�ed in the form
SBY(θj, θk)SBY(−θj,−θk) = 1To investigate the thermodynami
 limit, we split up the θ axis into intervals ∆θ and weuse the densities ρo(θ) and ρh(θ) for the o

upied states and the holes. The total density ofstates is ρ(θ) = ρo(θ) + ρh(θ). It follows from (3.1) that the densities satisfy the 
onstraint

ρh(θ) + ρo(θ) =
1

2π
σ(θ) +

∫

B

dθ′

2π
K1(θ, θ

′)ρ(o)(θ′), (3.2)where
K1(θ, θ

′) = −i
∂

∂θ
logSBY (θ, θ′)and

σ(θ) = α
d

dθ
p(θ) + Θ(θ) (3.3)with

Θ(θ) = −i
d

dθ

1

L
log
(

RBY(θ)SBY(−θ,−θ)
) (3.4)Depending on the problem at hand there 
an be an extra −2πδ(θ) term to (3.4) to takeinto a

ount the Pauli-prin
iple.Based on the 
al
ulations of the previous se
tion we assume that the density of statesfor an N -parti
le state 
an be written as

ρN (θ1, . . . , θN ) = N ×
N
∏

j=1

(

2πLρ(θj)
) (3.5)where N is a bounded �nite number for a smooth distribution of roots. In the thermody-nami
 limit it is given typi
ally by a Fredholm-determinant; the expli
it 
al
ulation for ageneri
 
ase will be presented later in this se
tion.The partition fun
tion Z is obtained as a summation over all possible momentumquantum numbers in a �nite volume L. In the thermodynami
 limit it is evaluated by afun
tional integral over all possible density fun
tions. The usual pres
ription to de�ne aregularized fun
tional integral for Z is

∑

configurations

⇒

∫

. . .

∫

∏

θ

(

L∆θdρo(θ)
) (3.6)Here the produ
t is over the dis
retization points and there is one integral for the densityat that point. � 12 �



J
H
E
P
0
8
(
2
0
1
0
)
0
9
0

We believe that this pres
ription is not 
orre
t for Bethe Ansatz systems. The partitionfun
tion depends on the 
on�guration whi
h minimizes the free energy and also on thenumber of available states for that parti
ular 
on�guration. The 
al
ulations whi
h resultin formulas like (3.5) show that the number of available states for a Bethe Ansatz systemdoes not behave like the density in a free theory. Instead, there is the non-trivial �nite fa
tor
N whi
h has to be taken into a

ount. In other words, the 
onstraints for the 
on�gurationspa
e of the theory have to be in
orporated in the de�nition of the fun
tional integral.In the usual evaluation s
hemes the entropy 
onsiderations are worked out in rapidityspa
e, and the fun
tional integral is performed using (3.6). In this pro
edure one is freeto 
hoose the dis
retization mesh ∆θ in a fairly wide range (for a dis
ussion on this pointsee [4, 17℄). The 
al
ulations are safe in the sense that the end result does not depend on thea
tual value of ∆θ. However, ∆θ should be 
hosen large enough so that there are enoughparti
les in the interval (θ, θ+ ∆θ) to make the entropy 
onsiderations meaningful. On theother hand, the �ultimate dis
retization� would be to have one dis
retization point for ea
hparti
le in the system; in this 
ase the variation of the free energy would be performed onthe level of the momentum quantum numbers. Su
h a s
heme is obviously not amenablefor pra
ti
al purposes. The solution is to perform a transformation from the spa
e ofmomentum quantum numbers to the spa
e of rapidities; the important point is to keep theJa
obian asso
iated to this mapping. In the thermodynami
 limit the Ja
obian behavesas given by (3.5), where the produ
t over j = 1 . . . N 
an be interpreted as the �ultimatedis
retization� of the fun
tional integral (3.6). A very important observation is that in thethermodynami
 limit the pre-fa
tor N does not depend on the number of parti
les involved,therefore we 
on
lude that it must be present in any dis
retization s
heme.Based on the above 
onsiderations we propose the following de�nition of the fun
tionalintegral:

∑

configurations

⇒

∫

. . .

∫

N
∏

θ

(

L∆θdρo(θ)
) (3.7)The fa
tor N depends on the parti
ular thermodynami
 
on�guration whi
h minimizes thefree energy fun
tional. However, experien
e shows that N is a �nite number whi
h doesnot grow with the volume. Therefore it is expe
ted that it will not shift the position of thesaddle point and its only e�e
t is to 
orre
tly normalize the partition fun
tion. It followsthat the pres
ription (3.7) is equivalent to

∑

configurations

⇒ N

∫

. . .

∫

∏

θ

(

L∆θdρo(θ)
) (3.8)and the di�eren
e between (3.7) and (3.8) vanishes in the thermodynami
 limit.In the following we evaluate the partition fun
tion using the pres
ription (3.8). The
al
ulation pro
eeds in four steps:1. Establishing the Thermodynami
 Bethe Ansatz using the usual pres
ription (3.6)2. Evaluating the 
ontribution of the quadrati
 �u
tuations around the saddle point3. Evaluating the normalization fa
tor N� 13 �
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4. Writing down the �nal result with the 
orre
t normalization (3.8)The treatment of the quadrati
 �u
tuations follows exa
tly the same way as in [17℄; wesimply restate the results of [17℄ in our general framework. In order the keep the expositionsimple we omit some of the te
hni
al details and the 
he
ks of the various approximationswe make. For a 
areful treatment the reader is referred to the original work [17℄.Step 1. We evaluate the partition fun
tion using the fun
tional integral (3.6); the en-tropy 
onsiderations are worked out in rapidity spa
e. The number of mi
ro-
anoni
al
on�gurations is given by
Ω =

∏

θ

ω(ρo(θ))where
ω =

(

L∆θρ(θ)

L∆θρo(θ)

)

=

(

L∆θρ(θ)
)

!
(

L∆θρo(θ)
)

!
(

L∆θρh(θ)
)

!We approximate it using Stirling-formula as
log ω = L∆θs(ρ(θ)) + ς(ρ(θ)) + . . . ,where

s(ρ(θ)) = ρ(θ) log(ρ(θ)) − ρo(θ) log(ρo(θ)) − ρh(θ) log(ρh(θ))and
ς(ρ(θ)) = −

1

2
log(2πL∆θ) +

1

2
log

ρ(θ)

ρo(θ)ρh(θ)The free energy fun
tional 
an be written as
F [ρ(θ)] = L

∑

θ

(

e(θ)ρo(θ) − Ts(θ)
)

∆θ (3.9)The usual minimalization pro
edure yields the integral equation
e(θ)/T = ε(θ) +

∫

B

dθ′

2π
K1(θ, θ

′) log
(

1 + e−ε(θ
′)
)

, (3.10)where we introdu
ed the pseudo-energy fun
tion as
ρo(θ)

ρh(θ)
= e−ε(θ) (3.11)The �minimal part� of the free energy 
an be expressed simply as

Fmin = −LT

∫

B

dθ

2π
σ(θ) log

(

1 + e−ε(θ)
)

, (3.12)where σ(θ) is given by (3.3). � 14 �
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Step 2. We 
onsider the �u
tuations around the saddle point solution. As a �rst step weexpand the free energy fun
tional (3.9) around ρo(k) and ρh(k):
FL [ρo(θ)] ≃ Fmin − T

∑

θ

L∆θ
1

2

(

(ro(θ) + rh(θ))
2

ρo(θ) + ρh(θ)
−
r2h(θ)

ρh(θ)
−
r2o(θ)

ρo(θ)

)

. (3.13)Here the quantities
ro(θ) = δρo(θ) and rh(θ) = δρh(θ) (3.14)are 
onstrained by
ro(θ) + rh(θ) =

∑

θ′

K1

(

θ, θ′
)

ro(θ
′)∆θ′ . (3.15)The absolute magnitude of the partition fun
tion is then evaluated as

Z = N × e−βFmin ×

∫

· · ·

∫

∏

θ

(L∆θdr(θ))× (3.16)
exp

{

−
∑

θ

(

L∆θ
1

2

(

(ro(θ) + rh(θ))
2

ρo(θ) + ρh(θ)
−
r2h(θ)

ρh(θ)
−
r2o(θ)

ρo(θ)

)

−
1

2
ln

ρ0 + ρh
ρ0ρhL∆θ2π

)}

,We introdu
e new integration variables ξ(θ) a

ording to
ξ(θ) =

√

L∆θ
1

2

ρ(θ)

ρo(θ)ρh(θ)
r(θ) (3.17)This leads to

−
∑

θ,θ′,θ′′

ξ(θ)
(

δθ′,θ −Mθ′,θ

) (

δθ′,θ′′ −Mθ′,θ′′
)

ξ(θ′′) , (3.18)where δθ,θ′ is the Krone
ker symbol, and
Mθ,θ′ =

1

ρh(θ)

√

ρo(θ)ρh(θ)∆θ

ρo(θ) + ρh(θ)
K1(θ, θ

′)

√

ρo(θ′)ρh(θ′)∆θ′

ρo(θ′) + ρh(θ′)
(3.19)Finally, 
hanging the integration variable to ξ in (3.16) we have

Z = N e−βFmin

∫

· · ·

∫

∏

θ

(

dξ(θ)

π

)

exp







−
∑

θ,θ′,θ′′

ξ(θ)
(

δθ,θ′ −Mθ,θ′
) (

δθ′′,θ′ −Mθ′′,θ′
)

ξ(θ′′)







= N e−βFmin
(

det
[

δθ,θ′ −Kθ,θ′
])−1 (3.20)with

Kθ,θ′ =
√

ρh(θ) ·Mθ,θ′ ·
1

√

ρh(θ′)
=

√

ρo(θ)∆θ

ρo(θ) + ρh(θ)
K1(θ, θ

′)

√

ρo(θ′)∆θ′

ρo(θ′) + ρh(θ′)
. (3.21)Taking the limit ∑θ ∆θ →

∫

B
dθ yields
Z = N e−βFmin

(

det
(

1̂ − K̂1

)

)−1 (3.22)
� 15 �
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Step 3. The density of states is given by the determinant
ρN (θ1, . . . , θN ) = detJ , Jik =

∂Qi
∂θkA straightforward 
al
ulation shows that the matrix elements are given by

Jik = δik

(

Lσ(θi) +
N
∑

j=1

K1(θi, θj)
)

−K2(θi, θj),where
K2(θ, θ

′) = i
∂

∂θ′
log SBY(θ, θ′)The matrix 
an be written as

J = GΘ, where now
Θij = δijγj, Gij = δij −

K2(θi, θj)

γjwith
γj = Lσ(θj) +

N
∑

i=1

K1(θ1, θ2) (3.23)It follows from (3.2) that in the thermodynami
 limit
γj → 2πLρ(θj)The elements of ḠN 
an be written asymptoti
ally as

Gij = δij −
1

2πL

K2(θi, θj)

ρ(θj)Using (3.11) we 
on
lude that the limit of detGij is given by the Fredholm determinant withkernel K2(θ, θ
′). Therefore the normalization 
onstant of the free energy fun
tional (3.8) isgiven by

N = det
(

1̂ − K̂2

) (3.24)Step 4 � Our main result. Substituting (3.24) into (3.22) yields
Z = e−βFmin

det
(

1̂ − K̂2

)

det
(

1̂ − K̂1

) (3.25)Here K̂1 and K̂2 are integral operators whi
h a
t on fun
tions de�ned on B as
(

K̂j(f)
)

(x) =

∫

B

dy

2π
Kj(x, y)

1

1 + eε(y)
f(y) j = 1, 2and the kernels are given by

K1(θ, θ
′) = −i

∂

∂θ
log SBY(θ, θ′) K2(θ, θ

′) = i
∂

∂θ′
log SBY(θ, θ′)The phase shift SBY(θ, θ′) is de�ned impli
itly by the Bethe-Yang equations (3.1) and Fminis given by formula (3.12). � 16 �
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4 Expli
it examples � massive relativisti
 modelsIn this se
tion we evaluate (3.25) expli
itly in four di�erent 
ases; we restri
t ourselves torelativisti
 models. Non-relativisti
 ones 
an be treated in the same manner.4.1 Free fermioni
 gasIn this 
ase
B = R and σ(θ) = m cosh θ.There is no intera
tion between the parti
les, therefore

K1(θ, θ
′) = K2(θ, θ

′) = 0 and N = 1.The thermodynami
s is trivial:
ε(θ) = e(θ)/T = m cosh θ/Tand

Fmin = −LT

∫ ∞

−∞

dθ

2π
m cosh θ log

(

1 + e−m cosh θ/T
)There is no O(1) pie
e.4.2 Intera
ting parti
les with periodi
 boundary 
onditionsIn this 
ase

B = R and σ(θ) = m cosh θ.The s
attering phase shift is
SBY(θ, θ′) = S(θ − θ′).Therefore the two integral kernels are given by

K1(θ, θ
′) = K2(θ, θ

′) = ϕ(θ − θ′)The free energy reads
F pmin = −LT

∫ ∞

−∞

dθ

2π
m cosh θ log

(

1 + e−ε(θ)
) (4.1)Equation (3.25) results in

Z =
det
(

1̂ − K̂2

)

det
(

1̂ − K̂1

)e−βF
p
min = e−βF

p
minThe two Fredholm-determinants 
oin
ide and there is no O(1) pie
e.� 17 �
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4.3 Periodi
 b
. with a purely transmitting defe
tOne 
an 
onsider the Bethe Ansatz equations in the presen
e of a purely transmittingdefe
t:
eipjLT (θj)

∏

k 6=j

S(θj − θk) = 1,where T (θ) des
ribes the s
attering between the parti
les and the defe
t. Similar to theprevious 
ase one has
K1(θ, θ

′) = K2(θ, θ
′) = ϕ(θ − θ′)However, the fun
tion σ(θ) is now given by

σ(θ) = m cosh θ + ϕT (θ), where ϕT (θ) = −i
1

L

d

dθ
log T (θ)The partition fun
tion is expressed as

Z =
det
(

1̂ − K̂2

)

det
(

1̂ − K̂1

)e−βF
p
min−βFT = e−βF

p
min−βFTwhere FT is an O(1) pie
e given by

FT = −T

∫ ∞

−∞

dθ

2π
ϕT (θ) log

(

1 + e−ε(θ)
)This is in agreement with the previous results in the literature (see for example [23℄).4.4 Integrable boundariesHere the domain of integrations is B = R

+ and the s
attering phase shift is given by
SBY(θ, θ′) = S(θ − θ′)S(θ + θ′)The integral kernels are given by
K1(θ, θ

′) = ϕ(θ − θ′) + ϕ(θ + θ′)

K2(θ, θ
′) = ϕ(θ − θ′) − ϕ(θ + θ′)The asso
iated Fredholm-determinants are det

(

1̂−Q̂±
) where the operators Q̂± are de�nedas

(

Q̂±(f)
)

(x) =

∫ ∞

0

dy

2π

(

ϕ(x− y) ± ϕ(x+ y)
) 1

1 + eε(y)
f(y) (4.2)The fun
tion σ(θ) is given by

σ(θ) = 2m cosh θ + Θab(θ)where
Θab(θ) = −i

d

dθ

1

L
logRab(θ) − 2πδ(θ)

� 18 �
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The TBA equation (3.10) takes the form
m cosh θ/T = ε(θ) +

∫ ∞

0

dθ′

2π

(

ϕ(θ − θ′) + ϕ(θ + θ′)
)

log
(

1 + e−ε(θ
′)
)One 
an de�ne the pseudo-energy also for negative values of rapidities as ε(θ) = ε(−θ),then the above equation above is equivalent to

m cosh θ/T = ε(θ) +

∫ ∞

−∞

dθ′

2π
ϕ(θ − θ′) log

(

1 + e−ε(θ
′)
)

,whi
h is the usual periodi
 boundary 
onditions TBA. The minimal part of the free energyis expressed as
Fmin = −LT

∫ ∞

0

dθ

2π

(

2m cosh θ +
1

L
Θab(θ)

)

log
(

1 + e−ε(θ)
)

= F p
min + Fabwhere F p

min is the free energy of the periodi
 b
 system (4.1) and Fab is an O(1) pie
e givenby
Fab = −T

∫ ∞

−∞

dθ

4π
Θab(θ) log

(

1 + e−ε(θ)
) (4.3)The partition fun
tion reads

Z =
det
(

1̂ − Q̂−
)

det
(

1̂ − Q̂+
)e−βF

p
min−βFabTherefore the O(1) pie
e to the free energy is given by

log(gagb) = −βFab + log
det
(

1̂ − Q̂−
)

det
(

1̂ − Q̂+
) (4.4)In appendix A we show that the above ratio of Fredholm-determinants reprodu
es the
onstant logA de�ned in (2.22). Choosing the boundary 
onditions a = b the �nal result
an be written as

log(ga) =
1

2

∫ ∞

−∞

dθ

4π
Θaa(θ) log

(

1 + e−ε(θ)
)

+ (4.5)
+

1

2

∞
∑

n=1

1

n

∫ ∞

−∞

dθ1
2π

. . .

∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1 + eε(θi)

)

ϕ(θ1+θ2)ϕ(θ2 − θ3) . . . ϕ(θn− θ1)This is the exa
t non-perturbative g-fun
tion as obtained in [14℄.5 Expli
it examples � massless relativisti
 modelsIn this se
tion we 
onsider massless relativisti
 theories with diagonal s
attering [24, 25℄;for an introdu
tion to massless s
attering the reader is referred to [26℄. We assume thatthere is only one parti
le type in the spe
trum. There is an e�e
tive doubling be
ause one� 19 �
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has to treat left-moving and right-moving parti
les separately. We 
onsider parity-invarianttheories; the S-matri
es are given by
SLL(θ) = SRR(θ) SLR(θ) = SRL(θ)The TBA equations are usually written down for periodi
 boundary 
onditions, in whi
h
ase the TBA is a two-
omponent system:

ε1(θ) =
1

2
mReθ−

∫ ∞

−∞

dθ′

2π

(

ϕ11(θ−θ
′) log

(

1+e−ε1(θ
′)
)

+ϕ12(θ−θ
′) log

(

1+e−ε2(θ′)
)

) (5.1)
ε2(θ) =

1

2
mRe−θ−

∫ ∞

−∞

dθ′

2π

(

ϕ21(θ−θ
′) log

(

1+e−ε1(θ
′)
)

+ϕ22(θ−θ
′) log

(

1+e−ε2(θ
′)
)

)The kernels are de�ned as
ϕ11(θ) = ϕ22(θ) = −i

d

dθ
log SRR(θ) ϕ12(θ) = ϕ21(θ) = −i

d

dθ
logSLR(θ)One 
an then use the symmetry ε1(θ) = ε2(−θ) to transform the above system into a singleequation:

ε(θ) =
1

2
mReθ −

∫ ∞

−∞

dθ′

2π

(

ϕ11(θ − θ′) + ϕ12(θ + θ′)
)

log
(

1 + e−ε(θ
′)
) (5.2)The free energy is expressed as

F pmin = −LT

∫ ∞

−∞

dθ

2π
meθ log

(

1 + e−ε(θ)
) (5.3)It is generally expe
ted that for periodi
 boundary 
onditions there is no O(1) pie
e.In the following we apply the formalism of se
tion 3 to determine the g-fun
tion in thepresen
e of two integrable boundaries with re�e
tion fa
tors Ra(θ) and Rb(θ). Contrary tothe periodi
 
ase, in the open system there is no distin
tion between the left-movers and theright-movers. When a left-mover s
atters o� the left-boundary, it be
omes a right-moverwith the same energy and reversed momentum. Therefore both the Bethe Ansatz and alsothe thermodynami
s 
an be written down in terms of only one parti
le spe
ies and onepseudo-energy fun
tion.We use simple heuristi
 arguments to write down the Bethe-Yang equations. Theparti
les will be parametrized with the rapidity variable θ ∈ R whi
h refers to the situationwhen the parti
le is moving to the right, ie.

e(θ) =
1

2
meθ p(θ) =

1

2
meθWhen a parti
le with rapidity θ is taken ba
k and forth in the open system it meetsevery other parti
le twi
e. The two s
attering pro
esses are des
ribed by SRR(θ − θ′) and

SLR(θ + θ′). The Bethe-Yang equations read
ei2pjLRa(θ)Rb(θ)

∏

k 6=j

SRR(θk − θj)SLR(θk + θj) = 1 (5.4)
� 20 �
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To establish the 
onne
tion with our general formalism we extra
t the quantities
α = 2, RBY(θ) = Ra(θ)Rb(θ)SLR(−2θ),and for the s
attering phase shift we �nd

SBY(θ, θ′) = SRR(θ − θ′)SLR(θ + θ′)whi
h yields the integration kernels
K1(θ, θ

′) = ϕ11(θ − θ′) + ϕ12(θ + θ′)

K2(θ, θ
′) = ϕ11(θ − θ′) − ϕ12(θ + θ′)The fun
tion σ(θ) is given by
σ(θ) = meθ + Θab(θ)where

Θab(θ) = −i
d

dθ

1

L
logRab(θ), Rab(θ) = Ra(θ)Rb(θ)SLR(−2θ)Note that 
ontrary to (2.5) the δ(θ) term is missing from σ(θ) be
ause there are no formalsolutions with θ = 0 whi
h should be 
an
eled.Formula (3.10) yields the TBA equation

ε(θ) =
1

2
mReθ −

∫ ∞

−∞

dθ′

2π

(

ϕ11(θ − θ′) + ϕ12(θ + θ′)
)

log
(

1 + e−ε(θ
′)
) (5.5)This equation 
oin
ides with (5.2), although it was derived from a 
on
eptually di�erentBethe Ansatz. The interpretation is straightforward: the distribution of roots (and thereforethe O(L) pie
es of the free energy) do not depend on the boundary 
onditions, as it isexpe
ted on general grounds.Formula (3.12) yields

Fmin = F pmin + FabHere F pmin is given by (5.3) and Fab is an O(1) pie
e given by
Fab = −T

∫ ∞

−∞

dθ

2π
Θab(θ) log

(

1 + e−ε(θ)
) (5.6)Noti
e the fa
tor of 2 as 
ompared to (4.3).Putting everything together, equation (3.25) yields

Z =
det
(

1 − K̂2

)

det
(

1 − K̂1

)e−βF
p
min−βFab (5.7)In the next two subse
tions we expli
itly work out the details for simple s
atteringtheories with one parti
le spe
ies. The generalization to other models with more than oneparti
les (for example the s
attering theory in [27℄) 
an be treated with the straightforward� 21 �
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extension of (5.7). Finally we mention that the boundary independent part of (5.7) 
an bewritten in the form
log

det
(

1−K̂2

)

det
(

1−K̂1

) =
∞
∑

n=1

1

n

(Tr(K̂1)
n
−Tr(K̂2)

n
)

=
∞
∑

n=1

1

n

∑

a1...an

∫ ∞

−∞

dθ1
2π

. . . (5.8)
∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1+eεai (θi)

)

ϕ+
a1a2(θ1+ θ2)ϕ

−
a2a3(θ2− θ3) . . . ϕ

−
ana1(θn− θ1)The se
ond summation runs over ai = 1, 2, the pseudo-energies are given by

ε1(θ) = ε(θ) ε2(θ) = ε(−θ)with ε(θ) being the solution of (5.5) and the kernels are de�ned as
ϕ+
jk(θ) =

{

ϕ12(θ) for j = k

ϕ11(θ) for j 6= k
and ϕ−

jk(θ) =

{

ϕ11(θ) for j = k

ϕ12(θ) for j 6= kEquation (5.8) 
an be proven term by term using the symmetry ϕ±
jk(θ) = ϕ±

jk(−θ).5.1 The massless �ow from tri-
riti
al Ising to 
riti
al IsingThe simplest non-trivial massless model is probably the s
attering theory des
ribing the�ow from the tri-
riti
al Ising to the 
riti
al Ising model [24℄. In this theory there is onlyone parti
le spe
ies and the s
attering is des
ribed by
SLL(θ) = SRR(θ) = 1, SLR(θ) = − tanh(θ/2 − iπ/4) (5.9)In [16℄ g-fun
tion �ows were studied between di�erent 
onformal boundary 
onditions ofthe UV and IR theories in those 
ases where both the bulk and the boundary perturbationsare integrable and 
ompatible with ea
h other. There are two su
h possibilities:1. The �ow from the boundary 
ondition (0+) of tri-
riti
al Ising to (+) in Ising2. The �ow from the boundary 
ondition (d) of tri-
riti
al Ising to (f) (free) in IsingBoth �ows are indu
ed by the Φ13 perturbation on the boundary. For the pre
ise de�nitionof the boundary 
onditions we refer to [16℄ and referen
es therein. Here we show that theresults of [16℄ 
an be derived from our general formalism. Most importantly, we present anall-orders proof of the boundary-independent part of the g-fun
tion, whi
h di�ers from themassive version.In the present 
ase the integration kernels are given by

K1(θ, θ
′) = −K2(θ, θ

′) = ϕ(θ + θ′) =
1

cosh(θ + θ′)The fun
tion σ(θ) reads
σ(θ) = meθ + Θab(θ)� 22 �
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where
Θab(θ) = −i

d

dθ

1

L
logRab(θ), Rab(θ) = Ra(θ)Rb(θ)SLR(−2θ)The possible re�e
tion fa
tors Ra(θ) and Rb(θ) were spe
i�ed in [16℄.The TBA equation is given by

ε(θ) =
1

2
mReθ −

∫ ∞

−∞

dθ′

2π
ϕ(θ + θ′) log

(

1 + e−ε(θ
′)
) (5.10)Formula (3.12) yields

Fmin = F pmin + FabHere F pmin is given by (5.3) and Fab is an O(1) pie
e given by
Fab = −T

∫ ∞

−∞

dθ

2π
Θab(θ) log

(

1 + e−ε(θ)
)Putting everything together, equation (3.25) yields

Z =
det
(

1 + P̂+
)

det
(

1 − P̂+
)e−βF

p
min−βFab (5.11)where the operator P̂+ a
ts on fun
tions de�ned on R as

(

P̂+(f)
)

(x) =

∫ ∞

−∞

dy

2π
ϕ(x+ y)

1

1 + eε(y)
f(y) (5.12)The ratio of Fredholm-determinants 
an be evaluated using (2.20):

log
det
(

1 + P̂+
)

det
(

1 − P̂+
) =

∞
∑

n=1

1

n

(Tr(P̂+)
n
−Tr(−P̂+)

n
)

=

2
∞
∑

j=1

1

2j−1

∫

R2j−1

dθ1
2π

. . .
dθ2j−1

2π

(

2j−1
∏

i=1

1

1+eε(θi)

)

ϕ(θ1+ θ2)ϕ(θ2+ θ3) . . . ϕ(θ2j−1+ θ1)We �nd the exa
t g-fun
tion
log g = log ga + log g0where the boundary dependent part is

log ga =

∫ ∞

−∞

dθ

2π

(

ϕa(θ) − ϕ(2θ)
)

log
(

1 + e−ε(θ)
) (5.13)with

ϕa(θ) = −i
d

dθ
logRa(θ)and the boundary independent part is

log g0 = (5.14)
∞
∑

j=1

1

2j − 1

∫

R2j−1

dθ1
2π

. . .
dθ2j−1

2π

(

2j−1
∏

i=1

1

1+eε(θi)

)

ϕ(θ1 + θ2)ϕ(θ2 + θ3) . . . ϕ(θ2j−1 + θ1)
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Equation (5.14) is in agreement with the 
orresponding formula of [16℄. However, (5.13)
oin
ides with the result of [16℄ only in the 
ase of the �ow to the (f) boundary 
onditionin the Ising model. In the other 
ase, namely the �ow from (0+) in tri-
riti
al Ising to (+)in Ising there is a missing term −1
2 log 2. This dis
repan
y 
an be explained by the fa
t,that in the IR limit the boundary 
ondition 
orresponds to a mi
ros
opi
 theory where theground state degenera
y of 2 is removed. The s
attering theory des
ribes the variation ofthe g-fun
tion with respe
t to the temperature, therefore it is natural to assume that theextra term has to be added not just in the IR limit (whi
h 
orresponds to zero temperature),but also for the whole RG �ow. Therefore we write

log ga = −
1

2
log 2 +

∫ ∞

−∞

dθ

2π

(

ϕa(θ) − ϕ(2θ)
)

log
(

1 + e−ε(θ)
)whi
h is in agreement with [16℄.Finally we mention that (5.14) follows from the general formula (5.8) after substituting

ϕ11(θ) = 0 ϕ12(θ) = ϕ(θ)and making the appropriate 
hange of variables.5.2 The massless �ow M3,5 + Φ2,1 →M2,5In [28℄ a simple massless s
attering theory with one parti
le spe
ies was proposed to des
ribethe �ow from the minimal model M3,5 to M2,5 indu
ed by the perturbing �eld Φ2,1 [29℄. Inthis model the s
attering is des
ribed by
SLL(θ) = SRR(θ) = SLY(θ), SLR(θ) = SRL(θ) =

(

SLY(θ)
)−1

, (5.15)where SLY(θ) is the S-matrix of the massive Lee-Yang model [30, 31℄
SLY(θ) =

sinh θ + i sin(π/3)

sinh θ − i sin(π/3)The massive Lee-Yang model is the Φ1,3 perturbation of the minimal model M2,5. Inmassless theories the LL and RR s
attering matri
es are s
ale-invariant and they des
ribethe IR limiting CFT; this was the motivation for the 
hoi
e of SLL and SRR in (5.15).The possible re�e
tion fa
tors of this model have not yet been written down. Never-theless it is useful to derive the g-fun
tion, leaving the fa
tors Ra(θ) and Rb(θ) unspe
i�ed.The boundary dependent part will be given by (5.6); in the following we 
on
entrate onthe boundary independent part.Given the s
attering matri
es (5.15) the integral kernels are given by
K1(θ, θ

′) = ϕ(θ − θ′) − ϕ(θ + θ′)

K2(θ, θ
′) = ϕ(θ − θ′) + ϕ(θ + θ′),where
ϕ(θ) =

d

dθ
logSLY(θ)

� 24 �
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The TBA equation reads
ε(θ) =

1

2
mReθ −

∫ ∞

−∞

dθ′

2π

(

ϕ(θ − θ′) − ϕ(θ + θ′)
)

log
(

1 + e−ε(θ
′)
) (5.16)One 
an use the general formula (5.8) to express the boundary independent part of the

g-fun
tion as
log g0 =

1

2
log

det
(

1 − K̂2

)

det
(

1 − K̂1

) =

−
1

2

∞
∑

n=1

∑

a1...an

1

n

∫ ∞

−∞

dθ1
2π

. . .

∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1+eεai(θi)

)

ϕ(θ1+ θ2)ϕ(θ2− θ3) . . . ϕ(θn−θ1)The summations run over ai = 1, 2 and the pseudo-energies are given by
ε1(θ) = ε(θ) ε2(θ) = ε(−θ)where ε(θ) is the solution of (5.16). Noti
e that due to the spe
i�
 form of the S-matrix (5.15) there is an overall fa
tor of (−1) as 
ompared to the massive 
ase (2.22).6 Con
lusionsWe have studied the partition fun
tion of Bethe Ansatz solvable models as a fun
tion of thevolume and the temperature. We have shown how to obtain O(L0) pie
es to the free energyin the framework of the Thermodynami
 Bethe Ansatz: our main result is equation (3.25).In addition to possible boundary dependent parts in
orporated in the �minimal part� ofthe free energy Fmin the formula (3.25) involves two Fredholm-determinants whi
h dependonly on the s
attering in the bulk. In relativisti
 boundary �eld theory these two pie
es areresponsible for the boundary-independent part of the g-fun
tion. We have presented a newresult (5.7) whi
h applies to massless relativisti
 theories with arbitrary diagonal s
atteringin the bulk. This formula 
ould be used to study massless bulk-boundary �ows along thelines of [16℄.Formula (3.25) 
an be applied in a very straightforward way on
e the Bethe-Yangequations have been established. Therefore it is very natural to 
onje
ture that a similarresult will hold in theories with non-diagonal s
attering. In these models the �nite volumequantization pro
eeds through the diagonalisation of the transfer matrix, whi
h 
an bea
hieved by the introdu
tion of the so-
alled magnoni
 (or spin) parti
les [2, 32�34℄. On
ethis algebrai
 problem is solved, the derivation of the TBA follows straightforwardly; a
ommon property is that there are no energy-terms e(θ) asso
iated to the magnoni
 modes.We believe that our arguments 
an be applied to these Bethe Ansatz systems, parti
ularly inthose 
ases when the TBA results in a �nite set of equations. The study of these g-fun
tionswith magnoni
 modes is left for future work.Also, it would be interesting to study the �ow of the ex
ited states quantities GΨ(R)de�ned in (1.3). In models with dis
rete symmetries some of the ex
ited states 
an betreated simply by introdu
ing real or 
omplex fuga
ities λa = e−µa/T for the di�erent� 25 �
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parti
le types [35, 36℄. We expe
t that our present results will hold in these modi�edTBA systems. However, the problem of parti
le-like ex
ited states will probably requirenew ideas. In [37℄ it was shown that generally the amplitudes GΨ(R) in
lude normalizationfa
tors whi
h are analyti
 in 1/R; it is not yet 
lear whether these fa
tors 
an be interpretedin the framework of Thermodynami
 Bethe Ansatz.A
knowledgmentsWe would like to thank L. Palla, Z. Bajnok, M. Kormos and in parti
ular R. Tateo and G.Taká
s for en
ouraging and very helpful dis
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omments on the manus
ript.A Relations between the Fredholm-determinantsHere we 
onsider simple relations between the di�erent Fredholm-determinants introdu
edin the main text.The operators P̂+ and P̂− a
t on fun
tions de�ned on R as
(

P̂±(f)
)

(x) =

∫ ∞

−∞

dy

2π
ϕ(x± y)

1

1 + eε(y)
f(y)The fun
tion ϕ(θ) = ϑ′(θ) is the s
attering kernel. A very important property is that it issymmetri
:

ϕ(θ) = ϕ(−θ)The operators Q̂+ and Q̂− a
t on fun
tions de�ned on R
+ as

(

Q̂±(g)
)

(x) =

∫ ∞

0

dy

2π

(

ϕ(x− y) ± ϕ(x+ y)
) 1

1 + eε(y)
g(y)Let us de
ompose the real line as R = R

+ + R
− (the point x = 0 has zero measure,therefore it is irrelevant in the present 
ontext). It is easy to see, that in this de
ompositionthe operators P̂+ and P̂− 
an be written in blo
k form as

P̂+ =

(

B̂ Â

Â B̂

)

P̂− =

(

Â B̂

B̂ Â

)

, (A.1)where Â and B̂ are integral operators on R
+ with kernels ϕ(x−y) and ϕ(x+y), respe
tively.The determinant of the operators 1̂ − P̂± 
an be evaluated as

det
(

1̂ − P̂+
)

= det
(

1̂ − (Â+ B̂)
)

det
(

1̂ + (Â− B̂)
)

det
(

1̂ − P̂−
)

= det
(

1̂ − (Â+ B̂)
)

det
(

1̂ − (Â− B̂)
)Using the relations

Â =
Q̂+ + Q̂−

2
B̂ =

Q̂+ − Q̂−

2� 26 �
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one gets
det
(

1̂ − P̂+
)

= det
(

1̂ − Q̂+
)

det
(

1̂ + Q̂−
) (A.2)

det
(

1̂ − P̂−
)

= det
(

1̂ − Q̂+
)

det
(

1̂ − Q̂−
) (A.3)The relation (A.3) was used in the main text to prove the equivalen
e of the expres-sions (2.23) and (4.4). We wish to mention that eqs. (A.2)�(A.3) 
an be proven alternativelyterm by term using formula (2.20).Open A
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