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1 IntrodutionThe study of the thermodynamis of one dimensional integrable models with fatorizedsattering dates bak to the seminal work of Yang and Yang [1, 2℄. Their method, knowntoday as the Thermodynami Bethe Ansatz (TBA) is quite general and it was worked outfor a large number of models relevant to ondensed matter physis [3℄. In its simplestformulation the TBA is written down for periodi boundary onditions and it provides thefree energy density, ie. the O(L) part of the free energy.In this paper we study the sub-leading piees of the free energy for di�erent boundaryonditions in ontinuum models. We restrit ourselves to theories with diagonal sattering;however it is expeted, that the proposed methods will work even in the non-diagonal ase.1In this paper we fous mainly on relativisti theories.In integrable relativisti �eld theory the TBA was introdued by Al. Zamolodhikovin [4℄; soon thereafter it beame one of the entral tools to study �nite size e�ets. In1See the related omments in the Conlusions (setion 6).� 1 �
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relativisti models Eulidean invariane implies that the free energy density at �nite tem-perature is diretly related to the exat ground state energy in �nite volume. Studyingthis quantity it is possible to reover the behaviour around the �xed points of the renor-malization group �ow, whih are usually given by a onformal �eld theory. Thus the TBAprovides a link between the sattering theory (IR) and perturbed CFT (UV) desriptionof the same model: it predits the entral harge, the saling dimensions of the perturbingoperator, and various other quantities [4�6℄.The tehniques of integrability an be applied to problems with non-trivial integrableboundary onditions; in relativisti sattering theory the foundations were laid down in [7℄.One objet of partiular interest is the exat g-funtion, whih is the o�-ritial generaliza-tion of the non-integer ground state degeneray of ritial boundary onditions introduedby A�ek and Ludwig in the ontext of the Kondo model [8℄. The g-funtion desribesthe O(1) ontribution of a single boundary to the free energy and it an be used to studyrenormalization group �ows in the spae of boundary �eld theories [9, 10℄. In [11℄ it wasshown that the g-funtion satis�es a gradient formula, from whih it follows that in unitarytheories the boundary entropy monotonially dereases under the RG �ow. This is the
g-theorem, whih an be regarded as the boundary-ounterpart of the elebrated c-theoremby A. B. Zamolodhikov [12℄.It is an old and very natural idea to determine the g-funtion in the framework ofthe Thermodynami Bethe Ansatz. The �rst result appeared in [13℄, where the authorsproposed a simple formula based on the boundary-dependene of the Bethe equations.Later it was found in [10℄ that although the results of [13℄ orretly desribe the boundary-dependene of the g-funtion, a boundary-independent term has to be added in order tomath the preditions of CFT. The missing piee was derived in [14℄ using a luster ex-pansion for the free energy; the exat result was expressed in terms of the solution of theTBA with periodi boundary onditions. While this exat g-funtion suessfully passed anumber of non-trivial tests [14, 15℄ and reently it was generalized to desribe a massless�ow in [16℄, the interpretation of the boundary-independent terms remained unlear.A remarkable attempt to obtain the non-extensive piees to the free energy of BetheAnsatz systems was performed in [17℄, where it was shown that the quadrati �utuationsaround the saddle point solution yield a well-de�ned O(1) piee. However, the alula-tion of [17℄ seemed to ontradit all previous results: it did not reprodue the boundary-independent term of [14℄, moreover it predited an O(1) piee even in the periodi asewhere no suh term is expeted.In this paper we revisit the alulations of [17℄ and argue that the only �aw of [17℄ isthat it did not take into aount the non-trivial density of states in the on�guration spaeof Bethe Ansatz systems. In other words, the funtional integral for the partition funtionwas built on an inorret integration measure. We propose a new normalization based onthe thermodynami behaviour of the density of states and we obtain the orret results inall previously onsidered ases.The paper is organized as follows. In the next subsetion we provide the neessaryde�nitions for the g-funtion of relativisti boundary �eld theory. Setion 2 serves as awarm-up: we onsider general Bethe Ansatz systems and the behaviour of the density� 2 �
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(b)Figure 1. Pitorial representation of the two hannels for the evaluation of the ylinder partitionfuntion. The (imaginary) time evolution is generated in the vertial diretion by the orrespondingHamiltonians.of states in the thermodynami limit. In. setion 2.2 we revisit the alulations of [13℄and show that it is possible to obtain the boundary-independent part of the g-funtionby a simple heuristi argument. Motivated by these �ndings in setion 3 we present ageneral framework to evaluate all O(1) piees to the free energy. These formal results arethen evaluated expliitly in massive and massless relativisti models in setions 4 and 5,respetively. Finally setion 6 inludes our onlusions.1.1 The exat g-funtion � de�nitionsThe exat g-funtion an be de�ned as follows [13, 14℄. We restrit ourselves to the simplestase with only one massive partile in the spetrum; the generalization to other modelsis straightforward.Let us onsider a �nite ylinder with height L and irumferene R (�gure 1). Theintegrable boundaries a and b are plaed on the two ends of the ylinder. The partitionfuntion an be evaluated in two di�erent hannels. Viewing R as the diretion of time(�gure 1(a)) one obtains
Zab(R,L) = Tr e−Hab(L)R =

∑

ψ

e−E
ab
ψ

(L)R, (1.1)where Hab(L) is the Hamiltonian of the open system of size L with integrable boundaryonditions desribed by the re�etion fators Ra(θ) and Rb(θ). The summation runs overa omplete set of states and Eabψ (L) are the eigenvalues of the Hamiltonian Hab(L).On the other hand, one an use L as the time variable (�gure 1(b)). In this piturethe boundaries play the role of initial and �nal states of the time-evolution operator H(R),whih is the Hamiltonian of the system of size R with periodi boundary onditions. Inthis hannel the partition funtion is evaluated as
Zab(R,L) = 〈Ba|e

−H(R)L|Bb〉 =
∑

ψ

(

Gψa (R)
)∗
Gψb (R)e−Eψ(R)L (1.2)
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Here |Ba〉 and |Bb〉 are the boundary states orresponding to the boundary onditions [7℄and the summation runs over a omplete set of states of the periodi b. system. Theamplitudes GΨ
a,b(R) are de�ned as the normalized overlaps

Gψj (R) =
〈ψ|Bj〉
√

〈ψ|ψ〉
, j = a, b (1.3)Equations (1.1) and (1.2) have to be ontrasted with the de�nition of the partition funtionwith periodi boundary onditions in both diretion:

Z(R,L) = Tr e−H(R)L =
∑

ψ

e−E
ψ(R)L = Z(L,R) (1.4)If mL≫ 1 then (1.2) and (1.4) are dominated by the ground state with energy

E0(R) = ǫR+ O(e−mR),where ǫ is the bulk energy density, whih an be determined by omparing the TBA resultsto onformal perturbation theory [4�6℄.Similarly, if mR ≫ 1 then (1.1) is dominated by the ground state of the boundarysystem with energy
Eab0 (L) = ǫL+ fa + fb + O(e−mL),where fa and fb are non-extensive boundary-ontributions whih an be obtained from theboundary TBA [9, 13℄.Comparing (1.1) and (1.2) in the regime mL,mR≫ 1 one �nds

G0
j (R) = e−fjR

(

1 + O(e−mR)
)

, j = a, bThe g-funtion is then traditionally de�ned as
G0
j (R) = e−fjRgj(R), j = a, bIt follows from dimensional arguments that the g-funtion depends on r = mR only. It isuseful to re-de�ne the partition funtions as

Z̃(R,L) =
∑

ψ

e−(Eψ(L)−ǫL)R (1.5)
Z̃ab(R,L) =

∑

ψ

e−(Eab
ψ

(L)−fa−fb−ǫL)R (1.6)With this presription the vauum energies have the asymptotis
lim
L→∞

Eab0 (L) = lim
L→∞

E0(L) = 0,and the exited state energies are alulated additively in the Bethe Ansatz piture. The
g-funtion is then given by the limit

log ga(r)gb(r) = lim
L→∞

(

log Z̃ab(R,L) − log Z̃(R,L)
) (1.7)

� 4 �
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Our goal is the evaluation of the partition funtions (1.5) and (1.6) in the framework of theThermodynami Bethe Ansatz, with a speial emphasize on the overall normalization. Theexat g-funtion will be determined by the relation above.We would like to remind the reader that in relativisti sattering theories the BetheAnsatz does not provide an exat desription of the spetrum. In fat there are exponen-tially deaying residual �nite size e�ets, whih modify the multi-partile energies obtainedfrom the Bethe Ansatz [18, 19℄. In the onventional derivation of the TBA these ontri-butions are negleted; this is ertainly a good approximation in the dilute regime, wherethe average distane between the partiles is muh larger than their Compton-wavelengths.However, it an be argued that the TBA yields the orret results at any temperatures andany densities [20℄. In this paper we develop arguments about the thermodynami behaviourof ertain Bethe Ansatz quantities. We do not use any speial assumptions other than thosealready used in the derivation of the TBA. Therefore we may neglet exponential orre-tions; this assumption will be justi�ed by the results, whih are in agreement with the CFTresults in the UV (high temperature) limit.2 Thermodynami Bethe Ansatz and density of statesLet us onsider Bethe Ansatz systems with one partile type and no internal degrees offreedom. We use the rapidity variable θ to parametrize the states. The sattering isassumed to be elasti and fatorizing; the two-partile sattering is desribed by the purephase
S(θi − θj) = eiϑ(θi−θj)Energy and momentum are given by the funtions e(θ) and p(θ). In relativisti �eld theories

e(θ) = m cosh θ p(θ) = m sinh θwhereas in the non-relativisti ase we have
e(θ) =

m

2
θ2 p(θ) = mθAlternatively, one an introdue a hemial potential aording to

e(θ) → e(θ) − µIn the relativisti ase we always set µ = 0.Consider the Bethe-Yang quantization of an N -partile state in �nite volume L withperiodi boundary onditions:
eipjL

∏

k 6=j

S(θj − θk) = 1, j = 1 . . . N,where pj = p(θj). In the logarithmi form:
Qj = pjL+

∑

k 6=j

ϑ(θj − θk) = 2πIj j = 1 . . . N, Ij ∈ Z (2.1)
� 5 �
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We assume that the quantum numbers {I1, . . . , IN} ompletely haraterise the state andthat the solutions onsist of purely real rapidities, ie. we do not onsider theories with string-like solutions. Moreover, we assume that the solutions of (2.1) span the whole Hilbert-spae.The multi-partile energies an be alulated additively:
E
[

{I1, . . . , IN}
]

=

N
∑

j=1

e(θj)The solutions of (2.1) are plaed evenly in the spae of the quantum numbers. Inrapidity spae one an de�ne the density of states as
ρN (θ1, . . . , θN ) = detJ , Jik =

∂Qi
∂θkAlternatively, this an be interpreted as the norm of the Bethe Ansatz state [21℄.In the presene of integrable boundaries the quantization onditions an be written as

ei2pjLRa(θj)Rb(θj)
∏

k 6=j

S(θj − θk)S(θj + θk) = 1, j = 1 . . . N, θj > 0 (2.2)or̄
Qj = 2pjL+ ϑa(θj) + ϑb(θj) +

∑

k 6=j

ϑ(θj − θk) + ϑ(θj + θk) = 2πIj , j = 1 . . . N, θj > 0where Ra,b(θ) = eiϑa,b(θ) are the elasti re�etion fators of the boundaries. The density ofstates is de�ned as
ρ̄N (θ1, . . . , θN ) = det J̄ , J̄ ik =

∂Q̄i
∂θkWe will be interested in the thermodynami behaviour of ρN and ρ̄N . These quantitieswill play an important role in the normalization of the partition funtion in 2.2 and in thegeneral treatment of setion 3.If the partile number is kept �xed and the volume is sent to in�nity, then the densitiesbehave as LN . In partiular

ρN , ρ̄N ∼
(

1 + O(L−1)
)

×
N
∏

j=1

(

2πσ(θj)L
)where σ(θ) = p′(θ)/2π. Note that although the leading piee is the same for ρN and ρ̄N , thesub-leading terms are in general di�erent. An important property is that the oe�ient ofthese O(L−1) term grows linearly with N . Therefore it is expeted that if both L and N goto in�nity with their ratios �xed, then the densities will have a non-trivial thermodynamilimit, whih is expeted to be di�erent for ρN and ρ̄N . In this limit all higher order termsof O(L−n) ontribute.In the following we onsider the partiular ase when the state in question is a �nite-volume miro-anonial realization of an in�nite volume thermal state. In other words,� 6 �
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we send N and L to in�nity with their ratios �xed, and we hoose the distribution ofBethe-Ansatz roots aording to some Thermodynami Bethe Ansatz equation.As a starting point we brie�y review the basi notions of the TBA. In the thermody-nami limit we introdue the total density of states2 ρ(θ) and also the density of oupiedstates ρ(o)(θ). The partile density is given by the integral
n =

N

L
=

∫

dθ ρ(o)(θ)In the periodi ase the densities satisfy the onstraint
ρ(θ) =

1

2π
σP (θ) +

∫ ∞

−∞

dθ′

2π
ϕ(θ − θ′)ρ(o)(θ′), (2.3)where ϕ = −i ddθ logS(θ) and σP (θ) = dp/dθ. On the other hand, in the boundary ase wehave θ > 0 and the densities satisfy the onstraint

ρ(θ) =
1

2π
σab(θ) +

∫ ∞

0

dθ′

2π

(

ϕ(θ − θ′) + ϕ(θ + θ′)
)

ρ(o)(θ′) (2.4)where now
σab(θ) =

d

dθ

(

2p(θ) − i
1

L
logRab(θ)

)

− 2πδ(θ) (2.5)where Rab(θ) = Ra(θ)Rb(θ)S(−2θ) and the extra term ontaining δ(θ) was introdued toanel the unphysial solutions orresponding to θ = 0.It is known, that the the distribution of roots is given in both ases by the thermody-nami Bethe Ansatz equations
Tε(θ) = e(θ) − T

∫ ∞

−∞

dθ′

2π
ϕ(θ − θ′) log(1 + e−ε(θ

′)), (2.6)where we introdued the pseudo-energy as
ρ(θ)

ρ(o)(θ)
= 1 + eε(θ) (2.7)2.1 The thermodynami limit of the densities ρN and ρ̄NThe alulations will be based on the tehniques developed in the Algebrai Bethe Ansatzliterature, see for example appendix A in [22℄.In the periodi ase the matrix elements of J read

Jik = δik

(

LσP (θi) +

N
∑

j=1

ϕ(θi − θj)

)

− ϕ(θi − θj)2We use the term �density� for both ρN and ρ(θ), ρ(o)(θ). However, these quantities have a very di�erentmeaning: ρ(θ) and ρo(θ) desribe the distribution of roots within one on�guration, whereas ρN desribesthe density of states in the (thermodynami dimensional) on�guration spae.� 7 �
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The matrix J an be written as the produt
J = GΘ, where

Θij = δijγj , Gij = δij −
ϕ(θij)

γj
and

γj = LσP (θj) +

N
∑

i=1

ϕ(θij) (2.8)With this notation
ρN = detGN detΘNIn the L→ ∞ limit we have from (2.3)
γj → 2πLρ(θj)The elements of GN an be written asymptotially as

Gij = δij −
1

2πL

ϕ(θij)

ρ(θj)Using (2.7) we onlude that the limit of detGij is given by the Fredholm determinant
det
(

1̂ − P̂−
) (2.9)where P̂− is an integral operator ating as

(

P̂−(f)
)

(x) =

∫ ∞

−∞

dy

2π
ϕ(x− y)

1

1 + eε(y)
f(y) (2.10)Therefore

ρN ⇒ det
(

1̂ − P̂−
)

×
N
∏

j=1

2πLρ(θj) (2.11)The Fredholm determinant (2.9) is well-de�ned if the operator P̂− is trae lass. This anbe heked expliitly in non-relativisti situations [21℄, or in massive relativisti models atlow temperatures, where Tr((P̂−
)†
P̂−
)

∼ O(e−2m/T ).Here and in the rest of the paper we will assume that the Fredholm determinants weenounter are always well-de�ned. Even if this is not the ase, they ould be made regularby introduing a rapidity ut-o�. This ut-o� would not a�et the �nal results, beausethe O(1) piees of the free energy will be expressed as integral series whih are well-de�nedfor arbitrary temperatures.Now we turn to the alulation of ρ̄N . In this ase the matrix elements of the Jaobianread
J̄ik = δik

(

Lσab(θi) +

N
∑

j=1

(

ϕ(θi − θj) + ϕ(θi + θj)
)

)

−
(

ϕ(θi − θj) − ϕ(θi + θj)
)

� 8 �
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The matrix an be written as
J̄ = ḠΘ̄, with

Θ̄ij = δij γ̄j , Ḡij = δij −
ϕ(θi − θj) − ϕ(θi + θj)

γj
,where now

γj = Lσab(θj) +
N
∑

i=1

(

ϕ(θi − θj) + ϕ(θi + θj)
) (2.12)The quantities γj have the same thermodynami limit as in the periodi ase:

γj → 2πLρ(θj)In the thermodynami limit one �nds
ρ̄N ⇒ det

(

1̂ − Q̂−
)

×
N
∏

j=1

2πLρ(θj), (2.13)where Q̂− ats on funtions de�ned on R
+ as

(

Q̂−(f)
)

(x) =

∫ ∞

0

dy

2π

(

ϕ(x− y) − ϕ(x+ y)
) 1

1 + eε(y)
f(y) (2.14)Notie that the leading parts of (2.11) and (2.13) have the same form, however the pre-fators are di�erent. This will play an important role in the next subsetion.2.2 A heuristi derivation of the g-funtion (massive ase)Here we revisit the alulation of [13℄ to determine the exat g-funtion in massive rela-tivisti boundary QFT. We obtain obtain the orret boundary independent part of the

g-funtion using a simple heuristi argument.In setion 4 of [13℄ the authors start with the quantization onditions for N partiles3
ei2mL sinh θjRa(θj)Rb(θj)

∏

k 6=j

S(θj − θk)S(θj + θk) = 1, j = 1 . . . N, θj > 0 (2.15)This an be written alternatively as a quantization ondition for 2n partiles:
ei2mL sinh θjR(θi)

∏

k 6=j

S(θj − θk) = 1, j = 1 . . . 2n (2.16)with the additional onstraint
θ2n−j = −θj (2.17)The funtion R(θ) in (2.16) is de�ned as

R(θ) = Ra(θ)Rb(θ)S(−2θ),3In [13℄ (and also in [14℄) the roles of L and R are swithed as opposed to our onventions.� 9 �
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In [13℄ the authors use (2.16) as a starting point to derive the thermodynamis. Theyshow that (2.16) yields the usual periodi-boundary-onditions TBA and derive a single
O(1) orretion to the free energy:

log(gagb) =
1

4π

∫ ∞

−∞

dθ Θab(θ) log
(

1 + e−ε(θ)
) (Inomplete) (2.18)where

Θab(θ) = −i
d

dθ
logR(θ) − 2πδ(θ)where the term δ(θ) is introdued to anel the unphysial states whih do not respet thePauli-priniple. This result was shown to be inomplete in [10, 14℄.We believe that the derivation in [13℄ is orret in every respet but one. There itwas assumed that the hange from system (2.15) to (2.16)�(2.17) is trivial. However,the previous subsetion shows that the density of states of the two BA systems behavesdi�erently in the thermodynami limit. In fat, the periodi system with 2N partiles hasa density

ρ2N ∼ det
(

1̂ − P̂−
)

×
2N
∏

j=1

2πLρ(θj)whereas the two opies of the boundary systems with N partiles have a density
(

ρ̄N

)2
∼ det2

(

1̂ − Q̂−
)

×
2N
∏

j=1

2πLρ(θj)In other words, there is a �nite ratio between the (thermodynami dimensional) densities:
(

ρ̄N
)2

ρ2N
∼

det2
(

1̂ − Q̂−
)

det
(

1̂ − P̂−
) (2.19)This fator does not grow with the volume L, therefore it does not a�et the thermody-nami limit of the distribution of roots. This means that passing from the system (2.15)to (2.16)�(2.17) the saddle point will not be hanged and the distribution of roots will bedesribed indeed by the periodi-boundary-onditions TBA. However, a �nite fator for thedensity of states has to be kept in order to have a diret omparison between the partitionfuntions. In other words, the ratio (2.19) has to be inluded in the overall normalizationof the partition funtion of the boundary system.It is useful to expliitly evaluate this �nite fator. We start by employing the identity

det
(

1̂ − K̂
)

= exp

{

−
∞
∑

n=1

1

n
TrKn

} (2.20)whih is valid for any Fredholm-determinant. In the present ase we have
(

ρ̄N
)2

ρ2N
⇒ A =

det2
(

1̂ − Q̂−
)

det
(

1̂ − P̂−
) = exp

{

∞
∑

n=1

1

n

(

2Tr(P−)
n
−Tr(Q−)

n
)

} (2.21)
� 10 �
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Notie that the kernels P− and Q− have di�erent support. In an be heked order byorder, that the above formula results in
logA=

∞
∑

n=1

1

n

∫ ∞

−∞

dθ1
2π

. . .

∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1+eε(θi)

)

ϕ(θ1+θ2)ϕ(θ2−θ3) . . . ϕ(θn−θ1) (2.22)Adding this onstant to (2.18) one �nds
log(ga) =

1

4π

∫ ∞

−∞

dθ Θaa(θ) log
(

1 + e−ε(θ)
)

+
1

2
logA (2.23)where

Θaa(θ) = ϕa(θ) − ϕ(2θ) − πδ(θ), ϕa(θ) = −i
d

dθ
logRa(θ)This is the exat non-perturbative g-funtion as obtained in [14℄. We wish to note that theequivalene of (2.21) and (2.22) was already observed in [15℄.This derivation does not take into aount the �utuations around the saddle point,whih are expeted to give a non-extensive ontribution [17℄. However, equation (2.16)already looks like a periodi b. quantization (with an additional fator) and it is generallyaepted, that there is no O(1) piee in the periodi ase. This implies that eq. (2.23)already takes into aount all O(1) ontributions, ie. there are no additional terms due tothe �utuations.The reader may be onerned that our arguments are not onvining and that the pro-posed re-normalization might be ditated by the result itself. We agree that our derivationof (2.23) is ertainly not rigorous, however, it already shows that the density of states playan important role in the de�nition of the partition funtion. In the next setion we presenta general alulation built on �rst priniples, whih properly takes into aount both thedensity of states and the �utuations around the saddle point. In the massive ase weobtain the same result (2.23).3 O(1) piees to the free energy � formal derivationIn this setion we present a general framework to determine the O(1) piees to the freeenergy. We onsider Bethe-Ansatz systems with one partile type and one rapidity variable

θ whih takes its values from a domain B. The Bethe-Yang equations are assumed to takethe form
eiQj(θ1,...,θN ) ≡ eiαpjLRBY(θj)

∏

k 6=j

SBY(θj , θk) = 1 (3.1)where pj = p(θj). The pure number α and the phases RBY(θj) and SBY(θj , θk) depend onthe problem at hand. In massive relativisti models (or arbitrary non-relativisti models)with periodi boundary onditions we have
α = 1 RBY(θ) = 1

SBY(θj, θk) = S(θj − θk)� 11 �
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In the ase of integrable integrable boundaries
α = 2 RBY(θ) = Ra(θ)Rb(θ)

SBY(θj , θk) = S(θj − θk)S(θj + θk)For the treatment of massless relativisti models see setion 5. It is assumed that theunitarity ondition is satis�ed in the form
SBY(θj, θk)SBY(−θj,−θk) = 1To investigate the thermodynami limit, we split up the θ axis into intervals ∆θ and weuse the densities ρo(θ) and ρh(θ) for the oupied states and the holes. The total density ofstates is ρ(θ) = ρo(θ) + ρh(θ). It follows from (3.1) that the densities satisfy the onstraint

ρh(θ) + ρo(θ) =
1

2π
σ(θ) +

∫

B

dθ′

2π
K1(θ, θ

′)ρ(o)(θ′), (3.2)where
K1(θ, θ

′) = −i
∂

∂θ
logSBY (θ, θ′)and

σ(θ) = α
d

dθ
p(θ) + Θ(θ) (3.3)with

Θ(θ) = −i
d

dθ

1

L
log
(

RBY(θ)SBY(−θ,−θ)
) (3.4)Depending on the problem at hand there an be an extra −2πδ(θ) term to (3.4) to takeinto aount the Pauli-priniple.Based on the alulations of the previous setion we assume that the density of statesfor an N -partile state an be written as

ρN (θ1, . . . , θN ) = N ×
N
∏

j=1

(

2πLρ(θj)
) (3.5)where N is a bounded �nite number for a smooth distribution of roots. In the thermody-nami limit it is given typially by a Fredholm-determinant; the expliit alulation for ageneri ase will be presented later in this setion.The partition funtion Z is obtained as a summation over all possible momentumquantum numbers in a �nite volume L. In the thermodynami limit it is evaluated by afuntional integral over all possible density funtions. The usual presription to de�ne aregularized funtional integral for Z is

∑

configurations

⇒

∫

. . .

∫

∏

θ

(

L∆θdρo(θ)
) (3.6)Here the produt is over the disretization points and there is one integral for the densityat that point. � 12 �
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We believe that this presription is not orret for Bethe Ansatz systems. The partitionfuntion depends on the on�guration whih minimizes the free energy and also on thenumber of available states for that partiular on�guration. The alulations whih resultin formulas like (3.5) show that the number of available states for a Bethe Ansatz systemdoes not behave like the density in a free theory. Instead, there is the non-trivial �nite fator
N whih has to be taken into aount. In other words, the onstraints for the on�gurationspae of the theory have to be inorporated in the de�nition of the funtional integral.In the usual evaluation shemes the entropy onsiderations are worked out in rapidityspae, and the funtional integral is performed using (3.6). In this proedure one is freeto hoose the disretization mesh ∆θ in a fairly wide range (for a disussion on this pointsee [4, 17℄). The alulations are safe in the sense that the end result does not depend on theatual value of ∆θ. However, ∆θ should be hosen large enough so that there are enoughpartiles in the interval (θ, θ+ ∆θ) to make the entropy onsiderations meaningful. On theother hand, the �ultimate disretization� would be to have one disretization point for eahpartile in the system; in this ase the variation of the free energy would be performed onthe level of the momentum quantum numbers. Suh a sheme is obviously not amenablefor pratial purposes. The solution is to perform a transformation from the spae ofmomentum quantum numbers to the spae of rapidities; the important point is to keep theJaobian assoiated to this mapping. In the thermodynami limit the Jaobian behavesas given by (3.5), where the produt over j = 1 . . . N an be interpreted as the �ultimatedisretization� of the funtional integral (3.6). A very important observation is that in thethermodynami limit the pre-fator N does not depend on the number of partiles involved,therefore we onlude that it must be present in any disretization sheme.Based on the above onsiderations we propose the following de�nition of the funtionalintegral:

∑

configurations

⇒

∫

. . .

∫

N
∏

θ

(

L∆θdρo(θ)
) (3.7)The fator N depends on the partiular thermodynami on�guration whih minimizes thefree energy funtional. However, experiene shows that N is a �nite number whih doesnot grow with the volume. Therefore it is expeted that it will not shift the position of thesaddle point and its only e�et is to orretly normalize the partition funtion. It followsthat the presription (3.7) is equivalent to

∑

configurations

⇒ N

∫

. . .

∫

∏

θ

(

L∆θdρo(θ)
) (3.8)and the di�erene between (3.7) and (3.8) vanishes in the thermodynami limit.In the following we evaluate the partition funtion using the presription (3.8). Thealulation proeeds in four steps:1. Establishing the Thermodynami Bethe Ansatz using the usual presription (3.6)2. Evaluating the ontribution of the quadrati �utuations around the saddle point3. Evaluating the normalization fator N� 13 �
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4. Writing down the �nal result with the orret normalization (3.8)The treatment of the quadrati �utuations follows exatly the same way as in [17℄; wesimply restate the results of [17℄ in our general framework. In order the keep the expositionsimple we omit some of the tehnial details and the heks of the various approximationswe make. For a areful treatment the reader is referred to the original work [17℄.Step 1. We evaluate the partition funtion using the funtional integral (3.6); the en-tropy onsiderations are worked out in rapidity spae. The number of miro-anonialon�gurations is given by
Ω =

∏

θ

ω(ρo(θ))where
ω =

(

L∆θρ(θ)

L∆θρo(θ)

)

=

(

L∆θρ(θ)
)

!
(

L∆θρo(θ)
)

!
(

L∆θρh(θ)
)

!We approximate it using Stirling-formula as
log ω = L∆θs(ρ(θ)) + ς(ρ(θ)) + . . . ,where

s(ρ(θ)) = ρ(θ) log(ρ(θ)) − ρo(θ) log(ρo(θ)) − ρh(θ) log(ρh(θ))and
ς(ρ(θ)) = −

1

2
log(2πL∆θ) +

1

2
log

ρ(θ)

ρo(θ)ρh(θ)The free energy funtional an be written as
F [ρ(θ)] = L

∑

θ

(

e(θ)ρo(θ) − Ts(θ)
)

∆θ (3.9)The usual minimalization proedure yields the integral equation
e(θ)/T = ε(θ) +

∫

B

dθ′

2π
K1(θ, θ

′) log
(

1 + e−ε(θ
′)
)

, (3.10)where we introdued the pseudo-energy funtion as
ρo(θ)

ρh(θ)
= e−ε(θ) (3.11)The �minimal part� of the free energy an be expressed simply as

Fmin = −LT

∫

B

dθ

2π
σ(θ) log

(

1 + e−ε(θ)
)

, (3.12)where σ(θ) is given by (3.3). � 14 �
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Step 2. We onsider the �utuations around the saddle point solution. As a �rst step weexpand the free energy funtional (3.9) around ρo(k) and ρh(k):
FL [ρo(θ)] ≃ Fmin − T

∑

θ

L∆θ
1

2

(

(ro(θ) + rh(θ))
2

ρo(θ) + ρh(θ)
−
r2h(θ)

ρh(θ)
−
r2o(θ)

ρo(θ)

)

. (3.13)Here the quantities
ro(θ) = δρo(θ) and rh(θ) = δρh(θ) (3.14)are onstrained by
ro(θ) + rh(θ) =

∑

θ′

K1

(

θ, θ′
)

ro(θ
′)∆θ′ . (3.15)The absolute magnitude of the partition funtion is then evaluated as

Z = N × e−βFmin ×

∫

· · ·

∫

∏

θ

(L∆θdr(θ))× (3.16)
exp

{

−
∑

θ

(

L∆θ
1

2

(

(ro(θ) + rh(θ))
2

ρo(θ) + ρh(θ)
−
r2h(θ)

ρh(θ)
−
r2o(θ)

ρo(θ)

)

−
1

2
ln

ρ0 + ρh
ρ0ρhL∆θ2π

)}

,We introdue new integration variables ξ(θ) aording to
ξ(θ) =

√

L∆θ
1

2

ρ(θ)

ρo(θ)ρh(θ)
r(θ) (3.17)This leads to

−
∑

θ,θ′,θ′′

ξ(θ)
(

δθ′,θ −Mθ′,θ

) (

δθ′,θ′′ −Mθ′,θ′′
)

ξ(θ′′) , (3.18)where δθ,θ′ is the Kroneker symbol, and
Mθ,θ′ =

1

ρh(θ)

√

ρo(θ)ρh(θ)∆θ

ρo(θ) + ρh(θ)
K1(θ, θ

′)

√

ρo(θ′)ρh(θ′)∆θ′

ρo(θ′) + ρh(θ′)
(3.19)Finally, hanging the integration variable to ξ in (3.16) we have

Z = N e−βFmin

∫

· · ·

∫

∏

θ

(

dξ(θ)

π

)

exp







−
∑

θ,θ′,θ′′

ξ(θ)
(

δθ,θ′ −Mθ,θ′
) (

δθ′′,θ′ −Mθ′′,θ′
)

ξ(θ′′)







= N e−βFmin
(

det
[

δθ,θ′ −Kθ,θ′
])−1 (3.20)with

Kθ,θ′ =
√

ρh(θ) ·Mθ,θ′ ·
1

√

ρh(θ′)
=

√

ρo(θ)∆θ

ρo(θ) + ρh(θ)
K1(θ, θ

′)

√

ρo(θ′)∆θ′

ρo(θ′) + ρh(θ′)
. (3.21)Taking the limit ∑θ ∆θ →

∫

B
dθ yields
Z = N e−βFmin

(

det
(

1̂ − K̂1

)

)−1 (3.22)
� 15 �
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Step 3. The density of states is given by the determinant
ρN (θ1, . . . , θN ) = detJ , Jik =

∂Qi
∂θkA straightforward alulation shows that the matrix elements are given by

Jik = δik

(

Lσ(θi) +
N
∑

j=1

K1(θi, θj)
)

−K2(θi, θj),where
K2(θ, θ

′) = i
∂

∂θ′
log SBY(θ, θ′)The matrix an be written as

J = GΘ, where now
Θij = δijγj, Gij = δij −

K2(θi, θj)

γjwith
γj = Lσ(θj) +

N
∑

i=1

K1(θ1, θ2) (3.23)It follows from (3.2) that in the thermodynami limit
γj → 2πLρ(θj)The elements of ḠN an be written asymptotially as

Gij = δij −
1

2πL

K2(θi, θj)

ρ(θj)Using (3.11) we onlude that the limit of detGij is given by the Fredholm determinant withkernel K2(θ, θ
′). Therefore the normalization onstant of the free energy funtional (3.8) isgiven by

N = det
(

1̂ − K̂2

) (3.24)Step 4 � Our main result. Substituting (3.24) into (3.22) yields
Z = e−βFmin

det
(

1̂ − K̂2

)

det
(

1̂ − K̂1

) (3.25)Here K̂1 and K̂2 are integral operators whih at on funtions de�ned on B as
(

K̂j(f)
)

(x) =

∫

B

dy

2π
Kj(x, y)

1

1 + eε(y)
f(y) j = 1, 2and the kernels are given by

K1(θ, θ
′) = −i

∂

∂θ
log SBY(θ, θ′) K2(θ, θ

′) = i
∂

∂θ′
log SBY(θ, θ′)The phase shift SBY(θ, θ′) is de�ned impliitly by the Bethe-Yang equations (3.1) and Fminis given by formula (3.12). � 16 �
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4 Expliit examples � massive relativisti modelsIn this setion we evaluate (3.25) expliitly in four di�erent ases; we restrit ourselves torelativisti models. Non-relativisti ones an be treated in the same manner.4.1 Free fermioni gasIn this ase
B = R and σ(θ) = m cosh θ.There is no interation between the partiles, therefore

K1(θ, θ
′) = K2(θ, θ

′) = 0 and N = 1.The thermodynamis is trivial:
ε(θ) = e(θ)/T = m cosh θ/Tand

Fmin = −LT

∫ ∞

−∞

dθ

2π
m cosh θ log

(

1 + e−m cosh θ/T
)There is no O(1) piee.4.2 Interating partiles with periodi boundary onditionsIn this ase

B = R and σ(θ) = m cosh θ.The sattering phase shift is
SBY(θ, θ′) = S(θ − θ′).Therefore the two integral kernels are given by

K1(θ, θ
′) = K2(θ, θ

′) = ϕ(θ − θ′)The free energy reads
F pmin = −LT

∫ ∞

−∞

dθ

2π
m cosh θ log

(

1 + e−ε(θ)
) (4.1)Equation (3.25) results in

Z =
det
(

1̂ − K̂2

)

det
(

1̂ − K̂1

)e−βF
p
min = e−βF

p
minThe two Fredholm-determinants oinide and there is no O(1) piee.� 17 �
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4.3 Periodi b. with a purely transmitting defetOne an onsider the Bethe Ansatz equations in the presene of a purely transmittingdefet:
eipjLT (θj)

∏

k 6=j

S(θj − θk) = 1,where T (θ) desribes the sattering between the partiles and the defet. Similar to theprevious ase one has
K1(θ, θ

′) = K2(θ, θ
′) = ϕ(θ − θ′)However, the funtion σ(θ) is now given by

σ(θ) = m cosh θ + ϕT (θ), where ϕT (θ) = −i
1

L

d

dθ
log T (θ)The partition funtion is expressed as

Z =
det
(

1̂ − K̂2

)

det
(

1̂ − K̂1

)e−βF
p
min−βFT = e−βF

p
min−βFTwhere FT is an O(1) piee given by

FT = −T

∫ ∞

−∞

dθ

2π
ϕT (θ) log

(

1 + e−ε(θ)
)This is in agreement with the previous results in the literature (see for example [23℄).4.4 Integrable boundariesHere the domain of integrations is B = R

+ and the sattering phase shift is given by
SBY(θ, θ′) = S(θ − θ′)S(θ + θ′)The integral kernels are given by
K1(θ, θ

′) = ϕ(θ − θ′) + ϕ(θ + θ′)

K2(θ, θ
′) = ϕ(θ − θ′) − ϕ(θ + θ′)The assoiated Fredholm-determinants are det

(

1̂−Q̂±
) where the operators Q̂± are de�nedas

(

Q̂±(f)
)

(x) =

∫ ∞

0

dy

2π

(

ϕ(x− y) ± ϕ(x+ y)
) 1

1 + eε(y)
f(y) (4.2)The funtion σ(θ) is given by

σ(θ) = 2m cosh θ + Θab(θ)where
Θab(θ) = −i

d

dθ

1

L
logRab(θ) − 2πδ(θ)

� 18 �
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The TBA equation (3.10) takes the form
m cosh θ/T = ε(θ) +

∫ ∞

0

dθ′

2π

(

ϕ(θ − θ′) + ϕ(θ + θ′)
)

log
(

1 + e−ε(θ
′)
)One an de�ne the pseudo-energy also for negative values of rapidities as ε(θ) = ε(−θ),then the above equation above is equivalent to

m cosh θ/T = ε(θ) +

∫ ∞

−∞

dθ′

2π
ϕ(θ − θ′) log

(

1 + e−ε(θ
′)
)

,whih is the usual periodi boundary onditions TBA. The minimal part of the free energyis expressed as
Fmin = −LT

∫ ∞

0

dθ

2π

(

2m cosh θ +
1

L
Θab(θ)

)

log
(

1 + e−ε(θ)
)

= F p
min + Fabwhere F p

min is the free energy of the periodi b system (4.1) and Fab is an O(1) piee givenby
Fab = −T

∫ ∞

−∞

dθ

4π
Θab(θ) log

(

1 + e−ε(θ)
) (4.3)The partition funtion reads

Z =
det
(

1̂ − Q̂−
)

det
(

1̂ − Q̂+
)e−βF

p
min−βFabTherefore the O(1) piee to the free energy is given by

log(gagb) = −βFab + log
det
(

1̂ − Q̂−
)

det
(

1̂ − Q̂+
) (4.4)In appendix A we show that the above ratio of Fredholm-determinants reprodues theonstant logA de�ned in (2.22). Choosing the boundary onditions a = b the �nal resultan be written as

log(ga) =
1

2

∫ ∞

−∞

dθ

4π
Θaa(θ) log

(

1 + e−ε(θ)
)

+ (4.5)
+

1

2

∞
∑

n=1

1

n

∫ ∞

−∞

dθ1
2π

. . .

∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1 + eε(θi)

)

ϕ(θ1+θ2)ϕ(θ2 − θ3) . . . ϕ(θn− θ1)This is the exat non-perturbative g-funtion as obtained in [14℄.5 Expliit examples � massless relativisti modelsIn this setion we onsider massless relativisti theories with diagonal sattering [24, 25℄;for an introdution to massless sattering the reader is referred to [26℄. We assume thatthere is only one partile type in the spetrum. There is an e�etive doubling beause one� 19 �
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has to treat left-moving and right-moving partiles separately. We onsider parity-invarianttheories; the S-matries are given by
SLL(θ) = SRR(θ) SLR(θ) = SRL(θ)The TBA equations are usually written down for periodi boundary onditions, in whihase the TBA is a two-omponent system:

ε1(θ) =
1

2
mReθ−

∫ ∞

−∞

dθ′

2π

(

ϕ11(θ−θ
′) log

(

1+e−ε1(θ
′)
)

+ϕ12(θ−θ
′) log

(

1+e−ε2(θ′)
)

) (5.1)
ε2(θ) =

1

2
mRe−θ−

∫ ∞

−∞

dθ′

2π

(

ϕ21(θ−θ
′) log

(

1+e−ε1(θ
′)
)

+ϕ22(θ−θ
′) log

(

1+e−ε2(θ
′)
)

)The kernels are de�ned as
ϕ11(θ) = ϕ22(θ) = −i

d

dθ
log SRR(θ) ϕ12(θ) = ϕ21(θ) = −i

d

dθ
logSLR(θ)One an then use the symmetry ε1(θ) = ε2(−θ) to transform the above system into a singleequation:

ε(θ) =
1

2
mReθ −

∫ ∞

−∞

dθ′

2π

(

ϕ11(θ − θ′) + ϕ12(θ + θ′)
)

log
(

1 + e−ε(θ
′)
) (5.2)The free energy is expressed as

F pmin = −LT

∫ ∞

−∞

dθ

2π
meθ log

(

1 + e−ε(θ)
) (5.3)It is generally expeted that for periodi boundary onditions there is no O(1) piee.In the following we apply the formalism of setion 3 to determine the g-funtion in thepresene of two integrable boundaries with re�etion fators Ra(θ) and Rb(θ). Contrary tothe periodi ase, in the open system there is no distintion between the left-movers and theright-movers. When a left-mover satters o� the left-boundary, it beomes a right-moverwith the same energy and reversed momentum. Therefore both the Bethe Ansatz and alsothe thermodynamis an be written down in terms of only one partile speies and onepseudo-energy funtion.We use simple heuristi arguments to write down the Bethe-Yang equations. Thepartiles will be parametrized with the rapidity variable θ ∈ R whih refers to the situationwhen the partile is moving to the right, ie.

e(θ) =
1

2
meθ p(θ) =

1

2
meθWhen a partile with rapidity θ is taken bak and forth in the open system it meetsevery other partile twie. The two sattering proesses are desribed by SRR(θ − θ′) and

SLR(θ + θ′). The Bethe-Yang equations read
ei2pjLRa(θ)Rb(θ)

∏

k 6=j

SRR(θk − θj)SLR(θk + θj) = 1 (5.4)
� 20 �
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To establish the onnetion with our general formalism we extrat the quantities
α = 2, RBY(θ) = Ra(θ)Rb(θ)SLR(−2θ),and for the sattering phase shift we �nd

SBY(θ, θ′) = SRR(θ − θ′)SLR(θ + θ′)whih yields the integration kernels
K1(θ, θ

′) = ϕ11(θ − θ′) + ϕ12(θ + θ′)

K2(θ, θ
′) = ϕ11(θ − θ′) − ϕ12(θ + θ′)The funtion σ(θ) is given by
σ(θ) = meθ + Θab(θ)where

Θab(θ) = −i
d

dθ

1

L
logRab(θ), Rab(θ) = Ra(θ)Rb(θ)SLR(−2θ)Note that ontrary to (2.5) the δ(θ) term is missing from σ(θ) beause there are no formalsolutions with θ = 0 whih should be aneled.Formula (3.10) yields the TBA equation

ε(θ) =
1

2
mReθ −

∫ ∞

−∞

dθ′

2π

(

ϕ11(θ − θ′) + ϕ12(θ + θ′)
)

log
(

1 + e−ε(θ
′)
) (5.5)This equation oinides with (5.2), although it was derived from a oneptually di�erentBethe Ansatz. The interpretation is straightforward: the distribution of roots (and thereforethe O(L) piees of the free energy) do not depend on the boundary onditions, as it isexpeted on general grounds.Formula (3.12) yields

Fmin = F pmin + FabHere F pmin is given by (5.3) and Fab is an O(1) piee given by
Fab = −T

∫ ∞

−∞

dθ

2π
Θab(θ) log

(

1 + e−ε(θ)
) (5.6)Notie the fator of 2 as ompared to (4.3).Putting everything together, equation (3.25) yields

Z =
det
(

1 − K̂2

)

det
(

1 − K̂1

)e−βF
p
min−βFab (5.7)In the next two subsetions we expliitly work out the details for simple satteringtheories with one partile speies. The generalization to other models with more than onepartiles (for example the sattering theory in [27℄) an be treated with the straightforward� 21 �



J
H
E
P
0
8
(
2
0
1
0
)
0
9
0

extension of (5.7). Finally we mention that the boundary independent part of (5.7) an bewritten in the form
log

det
(

1−K̂2

)

det
(

1−K̂1

) =
∞
∑

n=1

1

n

(Tr(K̂1)
n
−Tr(K̂2)

n
)

=
∞
∑

n=1

1

n

∑

a1...an

∫ ∞

−∞

dθ1
2π

. . . (5.8)
∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1+eεai (θi)

)

ϕ+
a1a2(θ1+ θ2)ϕ

−
a2a3(θ2− θ3) . . . ϕ

−
ana1(θn− θ1)The seond summation runs over ai = 1, 2, the pseudo-energies are given by

ε1(θ) = ε(θ) ε2(θ) = ε(−θ)with ε(θ) being the solution of (5.5) and the kernels are de�ned as
ϕ+
jk(θ) =

{

ϕ12(θ) for j = k

ϕ11(θ) for j 6= k
and ϕ−

jk(θ) =

{

ϕ11(θ) for j = k

ϕ12(θ) for j 6= kEquation (5.8) an be proven term by term using the symmetry ϕ±
jk(θ) = ϕ±

jk(−θ).5.1 The massless �ow from tri-ritial Ising to ritial IsingThe simplest non-trivial massless model is probably the sattering theory desribing the�ow from the tri-ritial Ising to the ritial Ising model [24℄. In this theory there is onlyone partile speies and the sattering is desribed by
SLL(θ) = SRR(θ) = 1, SLR(θ) = − tanh(θ/2 − iπ/4) (5.9)In [16℄ g-funtion �ows were studied between di�erent onformal boundary onditions ofthe UV and IR theories in those ases where both the bulk and the boundary perturbationsare integrable and ompatible with eah other. There are two suh possibilities:1. The �ow from the boundary ondition (0+) of tri-ritial Ising to (+) in Ising2. The �ow from the boundary ondition (d) of tri-ritial Ising to (f) (free) in IsingBoth �ows are indued by the Φ13 perturbation on the boundary. For the preise de�nitionof the boundary onditions we refer to [16℄ and referenes therein. Here we show that theresults of [16℄ an be derived from our general formalism. Most importantly, we present anall-orders proof of the boundary-independent part of the g-funtion, whih di�ers from themassive version.In the present ase the integration kernels are given by

K1(θ, θ
′) = −K2(θ, θ

′) = ϕ(θ + θ′) =
1

cosh(θ + θ′)The funtion σ(θ) reads
σ(θ) = meθ + Θab(θ)� 22 �
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where
Θab(θ) = −i

d

dθ

1

L
logRab(θ), Rab(θ) = Ra(θ)Rb(θ)SLR(−2θ)The possible re�etion fators Ra(θ) and Rb(θ) were spei�ed in [16℄.The TBA equation is given by

ε(θ) =
1

2
mReθ −

∫ ∞

−∞

dθ′

2π
ϕ(θ + θ′) log

(

1 + e−ε(θ
′)
) (5.10)Formula (3.12) yields

Fmin = F pmin + FabHere F pmin is given by (5.3) and Fab is an O(1) piee given by
Fab = −T

∫ ∞

−∞

dθ

2π
Θab(θ) log

(

1 + e−ε(θ)
)Putting everything together, equation (3.25) yields

Z =
det
(

1 + P̂+
)

det
(

1 − P̂+
)e−βF

p
min−βFab (5.11)where the operator P̂+ ats on funtions de�ned on R as

(

P̂+(f)
)

(x) =

∫ ∞

−∞

dy

2π
ϕ(x+ y)

1

1 + eε(y)
f(y) (5.12)The ratio of Fredholm-determinants an be evaluated using (2.20):

log
det
(

1 + P̂+
)

det
(

1 − P̂+
) =

∞
∑

n=1

1

n

(Tr(P̂+)
n
−Tr(−P̂+)

n
)

=

2
∞
∑

j=1

1

2j−1

∫

R2j−1

dθ1
2π

. . .
dθ2j−1

2π

(

2j−1
∏

i=1

1

1+eε(θi)

)

ϕ(θ1+ θ2)ϕ(θ2+ θ3) . . . ϕ(θ2j−1+ θ1)We �nd the exat g-funtion
log g = log ga + log g0where the boundary dependent part is

log ga =

∫ ∞

−∞

dθ

2π

(

ϕa(θ) − ϕ(2θ)
)

log
(

1 + e−ε(θ)
) (5.13)with

ϕa(θ) = −i
d

dθ
logRa(θ)and the boundary independent part is

log g0 = (5.14)
∞
∑

j=1

1

2j − 1

∫

R2j−1

dθ1
2π

. . .
dθ2j−1

2π

(

2j−1
∏

i=1

1

1+eε(θi)

)

ϕ(θ1 + θ2)ϕ(θ2 + θ3) . . . ϕ(θ2j−1 + θ1)
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Equation (5.14) is in agreement with the orresponding formula of [16℄. However, (5.13)oinides with the result of [16℄ only in the ase of the �ow to the (f) boundary onditionin the Ising model. In the other ase, namely the �ow from (0+) in tri-ritial Ising to (+)in Ising there is a missing term −1
2 log 2. This disrepany an be explained by the fat,that in the IR limit the boundary ondition orresponds to a mirosopi theory where theground state degeneray of 2 is removed. The sattering theory desribes the variation ofthe g-funtion with respet to the temperature, therefore it is natural to assume that theextra term has to be added not just in the IR limit (whih orresponds to zero temperature),but also for the whole RG �ow. Therefore we write

log ga = −
1

2
log 2 +

∫ ∞

−∞

dθ

2π

(

ϕa(θ) − ϕ(2θ)
)

log
(

1 + e−ε(θ)
)whih is in agreement with [16℄.Finally we mention that (5.14) follows from the general formula (5.8) after substituting

ϕ11(θ) = 0 ϕ12(θ) = ϕ(θ)and making the appropriate hange of variables.5.2 The massless �ow M3,5 + Φ2,1 →M2,5In [28℄ a simple massless sattering theory with one partile speies was proposed to desribethe �ow from the minimal model M3,5 to M2,5 indued by the perturbing �eld Φ2,1 [29℄. Inthis model the sattering is desribed by
SLL(θ) = SRR(θ) = SLY(θ), SLR(θ) = SRL(θ) =

(

SLY(θ)
)−1

, (5.15)where SLY(θ) is the S-matrix of the massive Lee-Yang model [30, 31℄
SLY(θ) =

sinh θ + i sin(π/3)

sinh θ − i sin(π/3)The massive Lee-Yang model is the Φ1,3 perturbation of the minimal model M2,5. Inmassless theories the LL and RR sattering matries are sale-invariant and they desribethe IR limiting CFT; this was the motivation for the hoie of SLL and SRR in (5.15).The possible re�etion fators of this model have not yet been written down. Never-theless it is useful to derive the g-funtion, leaving the fators Ra(θ) and Rb(θ) unspei�ed.The boundary dependent part will be given by (5.6); in the following we onentrate onthe boundary independent part.Given the sattering matries (5.15) the integral kernels are given by
K1(θ, θ

′) = ϕ(θ − θ′) − ϕ(θ + θ′)

K2(θ, θ
′) = ϕ(θ − θ′) + ϕ(θ + θ′),where
ϕ(θ) =

d

dθ
logSLY(θ)
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The TBA equation reads
ε(θ) =

1

2
mReθ −

∫ ∞

−∞

dθ′

2π

(

ϕ(θ − θ′) − ϕ(θ + θ′)
)

log
(

1 + e−ε(θ
′)
) (5.16)One an use the general formula (5.8) to express the boundary independent part of the

g-funtion as
log g0 =

1

2
log

det
(

1 − K̂2

)

det
(

1 − K̂1

) =

−
1

2

∞
∑

n=1

∑

a1...an

1

n

∫ ∞

−∞

dθ1
2π

. . .

∫ ∞

−∞

dθn
2π

(

n
∏

i=1

1

1+eεai(θi)

)

ϕ(θ1+ θ2)ϕ(θ2− θ3) . . . ϕ(θn−θ1)The summations run over ai = 1, 2 and the pseudo-energies are given by
ε1(θ) = ε(θ) ε2(θ) = ε(−θ)where ε(θ) is the solution of (5.16). Notie that due to the spei� form of the S-matrix (5.15) there is an overall fator of (−1) as ompared to the massive ase (2.22).6 ConlusionsWe have studied the partition funtion of Bethe Ansatz solvable models as a funtion of thevolume and the temperature. We have shown how to obtain O(L0) piees to the free energyin the framework of the Thermodynami Bethe Ansatz: our main result is equation (3.25).In addition to possible boundary dependent parts inorporated in the �minimal part� ofthe free energy Fmin the formula (3.25) involves two Fredholm-determinants whih dependonly on the sattering in the bulk. In relativisti boundary �eld theory these two piees areresponsible for the boundary-independent part of the g-funtion. We have presented a newresult (5.7) whih applies to massless relativisti theories with arbitrary diagonal satteringin the bulk. This formula ould be used to study massless bulk-boundary �ows along thelines of [16℄.Formula (3.25) an be applied in a very straightforward way one the Bethe-Yangequations have been established. Therefore it is very natural to onjeture that a similarresult will hold in theories with non-diagonal sattering. In these models the �nite volumequantization proeeds through the diagonalisation of the transfer matrix, whih an beahieved by the introdution of the so-alled magnoni (or spin) partiles [2, 32�34℄. Onethis algebrai problem is solved, the derivation of the TBA follows straightforwardly; aommon property is that there are no energy-terms e(θ) assoiated to the magnoni modes.We believe that our arguments an be applied to these Bethe Ansatz systems, partiularly inthose ases when the TBA results in a �nite set of equations. The study of these g-funtionswith magnoni modes is left for future work.Also, it would be interesting to study the �ow of the exited states quantities GΨ(R)de�ned in (1.3). In models with disrete symmetries some of the exited states an betreated simply by introduing real or omplex fugaities λa = e−µa/T for the di�erent� 25 �
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partile types [35, 36℄. We expet that our present results will hold in these modi�edTBA systems. However, the problem of partile-like exited states will probably requirenew ideas. In [37℄ it was shown that generally the amplitudes GΨ(R) inlude normalizationfators whih are analyti in 1/R; it is not yet lear whether these fators an be interpretedin the framework of Thermodynami Bethe Ansatz.AknowledgmentsWe would like to thank L. Palla, Z. Bajnok, M. Kormos and in partiular R. Tateo and G.Takás for enouraging and very helpful disussions. Also, we are grateful to M. Kormos,G. Takás and G. Palaios for useful omments on the manusript.A Relations between the Fredholm-determinantsHere we onsider simple relations between the di�erent Fredholm-determinants introduedin the main text.The operators P̂+ and P̂− at on funtions de�ned on R as
(

P̂±(f)
)

(x) =

∫ ∞

−∞

dy

2π
ϕ(x± y)

1

1 + eε(y)
f(y)The funtion ϕ(θ) = ϑ′(θ) is the sattering kernel. A very important property is that it issymmetri:

ϕ(θ) = ϕ(−θ)The operators Q̂+ and Q̂− at on funtions de�ned on R
+ as

(

Q̂±(g)
)

(x) =

∫ ∞

0

dy

2π

(

ϕ(x− y) ± ϕ(x+ y)
) 1

1 + eε(y)
g(y)Let us deompose the real line as R = R

+ + R
− (the point x = 0 has zero measure,therefore it is irrelevant in the present ontext). It is easy to see, that in this deompositionthe operators P̂+ and P̂− an be written in blok form as

P̂+ =

(

B̂ Â

Â B̂

)

P̂− =

(

Â B̂

B̂ Â

)

, (A.1)where Â and B̂ are integral operators on R
+ with kernels ϕ(x−y) and ϕ(x+y), respetively.The determinant of the operators 1̂ − P̂± an be evaluated as

det
(

1̂ − P̂+
)

= det
(

1̂ − (Â+ B̂)
)

det
(

1̂ + (Â− B̂)
)

det
(

1̂ − P̂−
)

= det
(

1̂ − (Â+ B̂)
)

det
(

1̂ − (Â− B̂)
)Using the relations

Â =
Q̂+ + Q̂−

2
B̂ =

Q̂+ − Q̂−

2� 26 �
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one gets
det
(

1̂ − P̂+
)

= det
(

1̂ − Q̂+
)

det
(

1̂ + Q̂−
) (A.2)

det
(

1̂ − P̂−
)

= det
(

1̂ − Q̂+
)

det
(

1̂ − Q̂−
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