295 research outputs found
Controlled splitting of an atomic wave packet
We propose a simple scheme capable of adiabatically splitting an atomic wave
packet using two independent translating traps. Implemented with optical dipole
traps, our scheme allows a high degree of flexibility for atom interferometry
arrangements and highlights its potential as an efficient and high fidelity
atom optical beam splitter.Comment: 4 pages, 4 figures. Accepted by Phys. Rev. Let
Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July–August 2001: a multi-analytical approach
International audienceDuring the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA's techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture. Spherical, smooth and silico-aluminated fly-ash observed by an Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A rough calculation based on a BC/nss-SO4 mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign. From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion
Characterization of carbonaceous aerosols during the MINOS campaign in Crete, July–August 2001: a multi-analytical approach
During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis.<br> <br> During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 <font face='Symbol'>m</font>gC/m<sup>3</sup> for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 <font face='Symbol'>m</font>gC/m<sup>3</sup> for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, <i>r</i><sup>2</sup>=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO<sub>4</sub>), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA's techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture.<br> <br> Spherical, smooth and silico-aluminated fly-ash observed by an Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A rough calculation based on a BC/nss-SO<sub>4</sub> mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign.<br> <br> From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion
Specular reflection of matter waves from a rough mirror
We have made a high resolution study of the specularity of the atomic reflection from an evanescent wave mirror using velocity selective Raman transitions. We have observed a double structure in the velocity distribution after reflection: a peak consistent with specular reflection and a diffuse reflection pedestal, whose contribution decreases rapidly with increasing detuning. The diffuse reflection is due to two distinct effects: spontaneous emission in the evanescent wave and a roughness in the evanescent wave potential whose amplitude is smaller than the de Broglie wavelength of the reflected atoms
Effective spin model for interband transport in a Wannier-Stark lattice system
We show that the interband dynamics in a tilted two-band Bose-Hubbard model
can be reduced to an analytically accessible spin model in the case of resonant
interband oscillations. This allows us to predict the revival time of these
oscillations which decay and revive due to inter-particle interactions. The
presented mapping onto the spin model and the so achieved reduction of
complexity has interesting perspectives for future studies of many-body
systems.Comment: 7 pages, 4 figure
Spin squeezing, entanglement and quantum metrology with Bose-Einstein condensates
Squeezed states, a special kind of entangled states, are known as a useful
resource for quantum metrology. In interferometric sensors they allow to
overcome the "classical" projection noise limit stemming from the independent
nature of the individual photons or atoms within the interferometer. Motivated
by the potential impact on metrology as wells as by fundamental questions in
the context of entanglement, a lot of theoretical and experimental effort has
been made to study squeezed states. The first squeezed states useful for
quantum enhanced metrology have been proposed and generated in quantum optics,
where the squeezed variables are the coherences of the light field. In this
tutorial we focus on spin squeezing in atomic systems. We give an introduction
to its concepts and discuss its generation in Bose-Einstein condensates. We
discuss in detail the experimental requirements necessary for the generation
and direct detection of coherent spin squeezing. Two exemplary experiments
demonstrating adiabatically prepared spin squeezing based on motional degrees
of freedom and diabatically realized spin squeezing based on internal hyperfine
degrees of freedom are discussed.Comment: Phd tutorial, 23 pages, 17 figure
Atom chip based generation of entanglement for quantum metrology
Atom chips provide a versatile `quantum laboratory on a microchip' for
experiments with ultracold atomic gases. They have been used in experiments on
diverse topics such as low-dimensional quantum gases, cavity quantum
electrodynamics, atom-surface interactions, and chip-based atomic clocks and
interferometers. A severe limitation of atom chips, however, is that techniques
to control atomic interactions and to generate entanglement have not been
experimentally available so far. Such techniques enable chip-based studies of
entangled many-body systems and are a key prerequisite for atom chip
applications in quantum simulations, quantum information processing, and
quantum metrology. Here we report experiments where we generate multi-particle
entanglement on an atom chip by controlling elastic collisional interactions
with a state-dependent potential. We employ this technique to generate
spin-squeezed states of a two-component Bose-Einstein condensate and show that
they are useful for quantum metrology. The observed 3.7 dB reduction in spin
noise combined with the spin coherence imply four-partite entanglement between
the condensate atoms and could be used to improve an interferometric
measurement by 2.5 dB over the standard quantum limit. Our data show good
agreement with a dynamical multi-mode simulation and allow us to reconstruct
the Wigner function of the spin-squeezed condensate. The techniques
demonstrated here could be directly applied in chip-based atomic clocks which
are currently being set up
Quantum states made to measure
Recent progress in manipulating quantum states of light and matter brings
quantum-enhanced measurements closer to prospective applications. The current
challenge is to make quantum metrologic strategies robust against
imperfections.Comment: 4 pages, 3 figures, Commentary for Nature Photonic
Investigation of the thermal stability of Mg/Co periodic multilayers for EUV applications
We present the results of the characterization of Mg/Co periodic multilayers
and their thermal stability for the EUV range. The annealing study is performed
up to a temperature of 400\degree C. Images obtained by scanning transmission
electron microscopy and electron energy loss spectroscopy clearly show the good
quality of the multilayer structure. The measurements of the EUV reflectivity
around 25 nm (~49 eV) indicate that the reflectivity decreases when the
annealing temperature increases above 300\degreeC. X-ray emission spectroscopy
is performed to determine the chemical state of the Mg atoms within the Mg/Co
multilayer. Nuclear magnetic resonance used to determine the chemical state of
the Co atoms and scanning electron microscopy images of cross sections of the
Mg/Co multilayers reveal changes in the morphology of the stack from an
annealing temperature of 305\degreee;C. This explains the observed reflectivity
loss.Comment: Published in Applied Physics A: Materials Science \& Processing
Published at
http://www.springerlink.com.chimie.gate.inist.fr/content/6v396j6m56771r61/ 21
page
- …