603 research outputs found

    Asteroseismology of the visual binary 70 Ophiuchi

    Full text link
    Convection in stars excites resonant acoustic waves. The frequencies of these oscillations depend on the sound speed inside the star, which in turn depends on density, temperature, gas motion, and other properties of the stellar interior. Therefore, analysis of the oscillations provides an unrivaled method to probe the internal structure of a star. Solar-like oscillations in the primary of the visual binary 70 Ophiuchi are investigated. 70 Ophiuchi A was observed with the Harps spectrograph mounted on the 3.6-m telescope at the ESO La Silla Observatory (Chile) during 6 nights in July 2004 allowing us to collect 1758 radial velocity measurements with a standard deviation of about 1.39 m s-1. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 3 and 6 mHz showing regularity with a large spacing of Delta_nu = 161.7 +- 0.3 uHz. Fourteen individual modes were identified with amplitudes in the range 11 to 14 cm s-1.Comment: 5 pages, A&A in pres

    Impact of rotation and disc lifetime on pre-main sequence lithium depletion of solar-type stars

    Full text link
    Aims: We study the influence of rotation and disc lifetime on lithium depletion of pre-main sequence (PMS) solar-type stars. Methods: The impact of rotational mixing and of the hydrostatic effects of rotation on lithium abundances are investigated by computing non-rotating and rotating PMS models that include a comprehensive treatment of shellular rotation. The influence of the disc lifetime is then studied by comparing the lithium content of PMS rotating models experiencing different durations of the disc-locking phase between 3 and 9 Myr. Results: The surface lithium abundance at the end of the PMS is decreased when rotational effects are included. During the beginning of the lithium depletion phase, only hydrostatic effects of rotation are at work. This results in a decrease in the lithium depletion rate for rotating models compared to non-rotating ones. When the convective envelope recedes from the stellar centre, rotational mixing begins to play an important role due to differential rotation near the bottom of the convective envelope. This mixing results in a decrease in the surface lithium abundance with a limited contribution from hydrostatic effects of rotation, which favours lithium depletion during the second part of the PMS evolution. The impact of rotation on PMS lithium depletion is also found to be sensitive to the duration of the disc-locking phase. When the disc lifetime increases, the PMS lithium abundance of a solar-type star decreases owing to the higher efficiency of rotational mixing in the radiative zone. A relationship between the surface rotation and lithium abundance at the end of the PMS is then obtained: slow rotators on the zero-age main sequence are predicted to be more lithium-depleted than fast rotators due to the increase in the disc lifetime.Comment: 8 pages, 11 figures, A&

    Discriminating between overshooting and rotational mixing in massive stars: any help from asteroseismology?

    Full text link
    Chemical turbulent mixing induced by rotation can affect the internal distribution of mu near the energy-generating core of main-sequence stars, having an effect on the evolutionary tracks similar to that of overshooting. However, this mixing also leads to a smoother chemical composition profile near the edge of the convective core, which is reflected in the behaviour of the buoyancy frequency and, therefore, in the frequencies of gravity modes. We show that for rotational velocities typical of main-sequence B-type pulsating stars, the signature of a rotationally induced mixing significantly perturbs the spectrum of gravity modes and mixed modes, and can be distinguished from that of overshooting. The cases of high-order gravity modes in Slowly Pulsating B stars and of low-order g modes and mixed modes in beta Cephei stars are discussed.Comment: 6 pages, 4 figures, Comm. in Asteroseismology, Contribution to the Proceedings of the 38th LIAC, HELAS-ESTA, BAG, 200

    Understanding angular momentum transport in red giants: the case of KIC 7341231

    Get PDF
    Context. Thanks to recent asteroseismic observations, it has been possible to infer the radial differential rotation profile of subgiants and red giants. Aims. We want to reproduce through modeling the observed rotation profile of the early red giant KIC 7341231 and constrain the physical mechanisms responsible for angular momentum transport in stellar interiors. Methods. We compute models of KIC 7341231 including a treatment of shellular rotation and we compare the rotation profiles obtained with the one derived by Deheuvels et al. (2012). We then modify some modeling parameters in order to quantify their effect on the obtained rotation profile. Moreover, we mimic a powerful angular momentum transport during the Main Sequence and study its effect on the evolution of the rotation profile during the subgiant and red giant phases. Results. We show that meridional circulation and shear mixing alone produce a rotation profile for KIC 7341231 too steep compared to the observed one. An additional mechanism is then needed to increase the internal transport of angular momentum. We find that this undetermined mechanism has to be efficient not only during the Main Sequence but also during the much quicker subgiant phase. Moreover, we point out the importance of studying the whole rotational history of a star in order to explain its rotation profile during the red giant evolution.Comment: 8 pages, 8 figures, 5 table

    Constraining angular momentum transport processes in stellar interiors with red-giant stars in the open cluster NGC6819

    Full text link
    Clusters are excellent test benches for verification and improvement of stellar evolution theory. The recent detection of solar-like oscillations in G-K giants in the open cluster NGC6819 with Kepler provides us with independent constraints on the masses and radii of stars on the red giant branch, as well as on the distance to clusters and their ages. We present, for NGC6819, evolutionary models by considering rotation-induced mixing ; and the theoretical low-l frequencies of our stellar models.Comment: Submitted to EPJ Web of Conferences, to appear in the Proceedings of the 3rd CoRoT Symposium, Kepler KASC7 joint meeting; 2 pages, 1 figur

    Asteroseismology of red giants to constrain angular momentum transport

    Get PDF
    Asteroseismic data obtained by the Kepler spacecraft have led to the recent detection and characterization of rotational frequency splittings of mixed modes in red-giant stars. This has opened the way to the determination of the core rotation rates for these stars, which is of prime importance to progress in our understanding of internal angular momentum transport. In this contribution, we discuss which constraints can be brought by these asteroseismic measurements on the modelling of angular momentum transport in stellar radiative zone

    Massive star evolution in close binaries:conditions for homogeneous chemical evolution

    Full text link
    We investigate the impact of tidal interactions, before any mass transfer, on various properties of the stellar models. We study the conditions for obtaining homogeneous evolution triggered by tidal interactions, and for avoiding any Roche lobe overflow during the Main-Sequence phase. We consider the case of rotating stars computed with a strong coupling mediated by an interior magnetic field. In models without any tidal interaction (single stars and wide binaries), homogeneous evolution in solid body rotating models is obtained when two conditions are realized: the initial rotation must be high enough, the loss of angular momentum by stellar winds should be modest. This last point favors metal-poor fast rotating stars. In models with tidal interactions, homogeneous evolution is obtained when rotation imposed by synchronization is high enough (typically a time-averaged surface velocities during the Main-Sequence phase above 250 km s1^{-1}), whatever the mass losses. In close binaries, mixing is stronger at higher than at lower metallicities. Homogeneous evolution is thus favored at higher metallicities. Roche lobe overflow avoidance is favored at lower metallicities due to the fact that stars with less metals remain more compact. We study also the impact of different processes for the angular momentum transport on the surface abundances and velocities in single and close binaries. In models where strong internal coupling is assumed, strong surface enrichments are always associated to high surface velocities in binary or single star models. In contrast, models computed with mild coupling may produce strong surface enrichments associated to low surface velocities. Close binary models may be of interest for explaining homogeneous massive stars, fast rotating Wolf-Rayet stars, and progenitors of long soft gamma ray bursts, even at high metallicities.Comment: 21 pages, 13 figures, 3 tables, accepted for publication in Astronomy and Astrophysic

    Effects of rotation and magnetic fields on the lithium abundance and asteroseismic properties of exoplanet-host stars

    Full text link
    Aims: The effects of rotation and magnetic fields on the surface abundances of solar-type stars are studied in order to investigate whether the reported difference in lithium content of exoplanet-host stars can be related to their rotational history. Moreover, the asteroseismic properties predicted for stars with and without exoplanets are compared to determine how such a scenario, which relates the lithium abundances and the rotational history of the star, can be further challenged by observations of solar-like oscillations. Methods: Based on observations of rotational periods of solar-type stars, slow rotators on the zero age main sequence (ZAMS) are modelled with a comprehensive treatment of only the shellular rotation, while fast rotators are modelled including both shellular rotation and magnetic fields. Assuming a possible link between low rotation rates on the ZAMS and the presence of planets as a result of a longer disc-locking phase during the pre-main sequence (PMS), we compare the surface abundances and asteroseismic properties of slow and fast rotating models, which correspond to exoplanet-host stars and stars without detected planets, respectively. Results: We confirm previous suggestions that the difference in the lithium content of stars with and without detected planets can be related to their different rotational history. The larger efficiency of rotational mixing predicted in exoplanet-host stars explains their lithium depletion and also leads to changes in the structure and chemical composition of the central stellar layers. Asteroseismic observations can reveal these changes and can help us distinguish between different possible explanations for the lower lithium content of exoplanet-host stars.Comment: 4 pages, 4 figures, A&A lette

    Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    Full text link
    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing of g-modes, and different acoustic radii. We discuss the signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified by spectroscopic studies cannot be caracterized with the global seismic parameters studied here. But it is not excluded that individual mode frequencies or other well chosen asteroseismic quantities might help constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&
    corecore