281 research outputs found

    Creating Ground State Molecules with Optical Feshbach Resonances in Tight Traps

    Full text link
    We propose to create ultracold ground state molecules in an atomic Bose-Einstein condensate by adiabatic crossing of an optical Feshbach resonance. We envision a scheme where the laser intensity and possibly also frequency are linearly ramped over the resonance. Our calculations for 87^{87}Rb show that for sufficiently tight traps it is possible to avoid spontaneous emission while retaining adiabaticity, and conversion efficiencies of up to 50% can be expected

    Photoassociative creation of ultracold heteronuclear 6Li40K* molecules

    Full text link
    We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment.Comment: 6 pages, 4 figures, submitted to EP

    Potential energy and dipole moment surfaces of H3- molecule

    Get PDF
    A new potential energy surface for the electronic ground state of the simplest triatomic anion H3- is determined for a large number of geometries. Its accuracy is improved at short and large distances compared to previous studies. The permanent dipole moment surface of the state is also computed for the first time. Nine vibrational levels of H3- and fourteen levels of D3- are obtained, bound by at most ~70 cm^{-1} and ~ 126 cm^{-1} respectively. These results should guide the spectroscopic search of the H3- ion in cold gases (below 100K) of molecular hydrogen in the presence of H3- ions

    Experimental study of the binding energy of NH3 on different types of ice and its impact on the snow line of NH3 and H2O

    Full text link
    N-bearing molecules (like N2H+ or NH3) are excellent tracers of high-density, low-temperature regions like dense cloud cores and could shed light into snowlines in protoplanetary disks and the chemical evolution of comets. However, uncertainties exist about the grain surface chemistry of these molecules -- which could play an important role in their formation and evolution. This study explores experimentally the behaviour of NH3_3 on surfaces mimicking grains under interstellar conditions alongside other major interstellar ice components (ie. H2_2O, CO, CO2_2). We performed co-deposition experiments using the Ultra High Vacuum (UHV) setup VENUS (VErs des NoUvelles Syntheses) of NH3_3 along with other adsorbates (here, H2_2O, 13^{13}CO and CO2_2) and performed Temperature Programmed Desorption (TPD) and Temperature Programmed-During Exposure Desorption (TP-DED) experiments. We obtained binding Energy (BE) distribution of NH3_3 on Crystalline Ice(CI) and compact-Amorphous Solid Water (c-ASW) by analyses of the TPD profiles of NH3 on the substrates. We observe a significant delay in the desorption and a decrease in the desorption rate of NH3_3 when H2_2O is introduced into the co-deposited mixture of NH3_3-13^{13}Co or NH3_3-CO2_2, absent without H2_2O. Secondly, H2_2O traps nearly 5-9 per cent of the co-deposited NH3, released during water's amorphous-to-crystalline phase change. Thirdly, for CI, we obtained a BE distribution between 3780K-4080K, and c-ASW between 3780K-5280K -- using a pre-exponential factor A = 1.94×1015\times 10^{15}/s. We conclude that NH3_3 behaviour is significantly influenced by the presence of H2_2O due to the formation of hydrogen bonds, in line with quantum calculations. This interaction preserves NH3_3 on grain surfaces to higher temperatures making it available to the central protostar in protoplanetary disks. It also explains why NH3_3 freeze out in pre-stellar cores is efficient

    Microstructural Assessment of 316L Stainless Steel Using Infrared Thermography Based Measurement of  Energy Dissipation Arising from Cyclic Loading

    Get PDF
    A procedure is developed that evaluates the energy dissipated from a material subject to cyclic loading and enables identification of the difference in material microstructure. It is demonstrated that the dissipated energy can be derived from specimens loaded in the elastic region using temperature measurements obtained by infrared thermography. To obtain accurate values of the small temperature changes resulting from the intrinsic dissipation below the yield point, a key part of the procedure is to eliminate the effect of external heat sources and sinks from the vicinity of the test specimen under investigation. To this end, a chamber was designed to minimise the external radiation whilst allowing the specimens to be cyclically loaded; the configuration of the chamber is described, alongside its integration into the procedure. A reference specimen was specifically introduced in the chamber to take into account the thermal exchanges between the specimen and the chamber environment. A data processing procedure, based on the thermomechanical heat diffusion equation, is applied to enable the dissipated energy to be derived from the temperature measurements. It is established that quantifying the amount of energy dissipation provides an opportunity to identify the material condition. The procedure is demonstrated on specimens made from 316L stainless steel containing a range of microstructures produced by different heat treatments. It is shown that the dissipative energy is dependent on the microstructure and that the dissipative source can be identified using the experimental procedure

    Influence of a Feshbach resonance on the photoassociation of LiCs

    Full text link
    We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational ground state through photoassociation into the B1Pi state, which has recently been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)]. Absolute rate constants for photoassociation at large detunings from the atomic asymptote are determined and are found to be surprisingly large. The photoassociation process is modeled using a full coupled-channel calculation for the continuum state, taking all relevant hyperfine states into account. The enhancement of the photoassociation rate is found to be caused by an `echo' of the triplet component in the singlet component of the scattering wave function at the inner turning point of the lowest triplet a3Sigma+ potential. This perturbation can be ascribed to the existence of a broad Feshbach resonance at low scattering energies. Our results elucidate the important role of couplings in the scattering wave function for the formation of deeply bound ground state molecules via photoassociation.Comment: Added Erratum, 20 pages, 9 figure

    Enhancement of the formation of ultracold 85^{85}Rb2_2 molecules due to resonant coupling

    Full text link
    We have studied the effect of resonant electronic state coupling on the formation of ultracold ground-state 85^{85}Rb2_2. Ultracold Rb2_2 molecules are formed by photoassociation (PA) to a coupled pair of 0u+0_u^+ states, 0u+(P1/2)0_u^+(P_{1/2}) and 0u+(P3/2)0_u^+(P_{3/2}), in the region below the 5S+5P1/25S+5P_{1/2} limit. Subsequent radiative decay produces high vibrational levels of the ground state, X1ÎŁg+X ^1\Sigma_g^+. The population distribution of these XX state vibrational levels is monitored by resonance-enhanced two-photon ionization through the 21ÎŁu+2 ^1\Sigma_u^+ state. We find that the populations of vibrational levels vâ€Čâ€Čv''=112−-116 are far larger than can be accounted for by the Franck-Condon factors for 0u+(P1/2)→X1ÎŁg+0_u^+(P_{1/2}) \to X ^1\Sigma_g^+ transitions with the 0u+(P1/2)0_u^+(P_{1/2}) state treated as a single channel. Further, the ground-state molecule population exhibits oscillatory behavior as the PA laser is tuned through a succession of 0u+0_u^+ state vibrational levels. Both of these effects are explained by a new calculation of transition amplitudes that includes the resonant character of the spin-orbit coupling of the two 0u+0_u^+ states. The resulting enhancement of more deeply bound ground-state molecule formation will be useful for future experiments on ultracold molecules.Comment: 6 pages, 5 figures; corrected author lis

    Electrostatic extraction of cold molecules from a cryogenic reservoir

    Full text link
    We present a method which delivers a continuous, high-density beam of slow and internally cold polar molecules. In our source, warm molecules are first cooled by collisions with a cryogenic helium buffer gas. Cold molecules are then extracted by means of an electrostatic quadrupole guide. For ND3_3 the source produces fluxes up to (7±47)×1010(7 \pm ^{7}_{4}) \times 10^{10} molecules/s with peak densities up to (1.0±0.61.0)×109(1.0 \pm ^{1.0}_{0.6}) \times 10^9 molecules/cm3^3. For H2_2CO the population of rovibrational states is monitored by depletion spectroscopy, resulting in single-state populations up to (82±10)(82 \pm 10)%.Comment: 4 pages, 4 figures, changes to the text, updated figures and reference

    Thermoelastic stress and damage analysis using transient loading

    No full text
    Thermoelastic stress analysis (TSA) is often regarded as a laboratory based technique due to its requirement for a cyclic load. A modified methodology is proposed in which only a single transient load is used for the TSA measurement. Two methods of imparting the transient load are validated against calculations and the conventional TSA approach. Specimens with different damage severities are tested and it is shown that the modified TSA method has the potential to be applied in the field as a non-destructive evaluation too

    Acetaldehyde binding energies: a coupled experimental and theoretical study

    Get PDF
    Acetaldehyde is one of the most common and abundant gaseous interstellar complex organic molecules, found in cold and hot regions of the molecular interstellar medium. Its presence in the gas-phase depends on the chemical formation and destruction routes, and its binding energy (BE) governs whether acetaldehyde remains frozen onto the interstellar dust grains or not. In this work, we report a combined study of the acetaldehyde BE obtained via laboratory TPD (Temperature Programmed Desorption) experiments and theoretical quantum chemical computations. BEs have been measured and computed as a pure acetaldehyde ice and as mixed with both polycrystalline and amorphous water ice. Both calculations and experiments found a BE distribution on amorphous solid water that covers the 4000--6000 K range, when a pre-exponential factor of 1.1×1018s−11.1\times 10^{18}s^{-1} is used for the interpretation of the experiments. We discuss in detail the importance of using a consistent couple of BE and pre-exponential factor values when comparing experiments and computations, as well as when introducing them in astrochemical models. Based on the comparison of the acetaldehyde BEs measured and computed in the present work with those of other species, we predict that acetaldehyde is less volatile than formaldehyde, but much more than water, methanol, ethanol, and formamide. We discuss the astrochemical implications of our findings and how recent astronomical high spatial resolution observations show a chemical differentiation involving acetaldehyde, which can easily explained as due to the different BEs of the observed molecules.Comment: 12 pages, 6 figure
    • 

    corecore