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Potential energy and dipole moment surfaces of H3
− molecule

M. Ayouz,1 O. Dulieu,1 R. Guérout,1 J. Robert,1 and V. Kokoouline1,2,a�

1Laboratoire Aimé Cotton, CNRS, Bât. 505, Université Paris-Sud, 91405 Orsay Cedex, France
2Department of Physics, University of Central Florida, Orlando, Florida 32816, USA

�Received 9 February 2010; accepted 13 April 2010; published online 20 May 2010�

A new potential energy surface for the electronic ground state of the simplest triatomic anion H3
− is

determined for a large number of geometries. Its accuracy is improved at short and large distances
compared to previous studies. The permanent dipole moment surface of the state is also computed
for the first time. Nine vibrational levels of H3

− and 14 levels of D3
− are obtained, bound by at most

�70 and �126 cm−1, respectively. These results should guide the spectroscopic search of the H3
−

ion in cold gases �below 100K� of molecular hydrogen in the presence of H− ions. © 2010 American
Institute of Physics. �doi:10.1063/1.3424847�

I. INTRODUCTION

Collisions involving hydrogen atoms, molecules, and
their positive �H+,H2

+� and negative �H−� ions play an impor-
tant role in chemistry and evolution of neutral or negatively
charged hydrogen plasma such as laboratory hydrogen
plasma, the interstellar medium �ISM�, atmospheres of the
Sun and other stars,1 as well as the Earth atmosphere. Binary
collisions of these species are simple enough to be treated
using first principle methods without any adjustable param-
eter. Therefore, such processes are often used as benchmarks
for testing theoretical methods.

The existence of bound states of the H3
− ion in a linear

configuration for the three nuclei has been suggested in
1937,2 but has been questioned since then. Different ab initio
calculations3–11 have been giving contradictory results for the
depth of the potential well. The estimated error bar in the
calculations was comparable or larger than obtained binding
energies, so the calculations could not predict for sure if the
H3

− ion is stable. Although first observations of H3
− ions have

been reported in low resolution experiments as early as in
1974,12–17 they could not warrant either the stability of H3

−. It
is only in the 1990s �Refs. 10 and 18� that theory became
precise enough to confirm the stability of the H3

− anion.
At present, there are three available accurate potential

energy surfaces �PES� of H3
−: the PES by Stärck and Meyer,10

by Belyaev and Tiukanov,19 and by Panda and
Sathyamurthy.11 In the following, these three PES will be
referred to as PES-SM, PES-BT, and PES-PS, respectively.
In addition, Belyaev et al.19–24 have obtained PES of excited
electronic states of H3

− and their non-Born–Oppenheimer25

couplings with the ground state. The excited electronic states
are unstable with respect to electron autodetachment. Bound
state calculation based on the PES-SM have been performed
for H3

−, H2D−, and D2H− in Ref. 10 and using the PES-BT for
H3

− in Ref. 16. It is worth to mention a stand alone study by
Robicheaux18 confirming the stability of H3

− �and similar an-

ions�, where the PES was derived from the scattering length
for the electron-H2 collisions, and from the polarizability of
H2.

While never observed in the ISM, the collisions between
H2 and H−, and of their isopotologues, have been studied in
a number of laboratory experiments back to the 1950s.26–32

Such collisions should also play a role in processes in toka-
maks, especially if the negative ion source �D−� is used for
the tokamak neutral beam injectors.33,34 Many studies have
been devoted to the calculation of elastic and inelastic cross
sections for H2−H− collisions and for all
isotopologues,11,24,35–46 most of them for energies signifi-
cantly larger than 1 eV above the lowest dissociation limit of
H2+H−. However, at such energies the theoretical cross sec-
tions may not be reliable. The dissociation energy of the H3

ground state lies only 0.75 eV above the H3
− dissociation

energy, and the non-Born–Oppenheimer interaction between
the ground states of H3 and H3

− could be significant. The
non-Born–Oppenheimer interactions have been taken into
account only in Ref. 47 within a reduced-dimensionality ap-
proach, where only linear geometries of H3

− have been taken
into account. Finally, the photodissociation of H2D− has been
studied in a simplified approach based on the Franck–
Condon overlap between a bound level and a scattering state
of H2D−,48 since the ab initio dipole moments of H3

− were not
available at that time.

The present study is mainly motivated by the formation
of H3

− bound states in low-energy collisions between H2 and
H−. In such collisions H3

− can be formed only if a third body
�other than H2 or H−� participates �three-body recombina-
tion� or if a photon is emitted �radiative association �RA��.
Both processes could be relevant for the chemistry of cold
interstellar clouds, if H− is present.49 Note that the H− ion has
not been detected so far in the ISM: it cannot be directly
observed by usual photoabsorption spectroscopy because H−

has only one bound electronic state.
The evaluation of the cross section for RA of H2 and H−

at low energy �10–30 K� requires an accurate PES with a
precision around 1 cm−1 or better, and permanent dipole mo-
ment surfaces �PDMS� for H3

−. In the present study, we cal-
culated a new ab initio PES for the H3

− electronic grounda�Electronic mail: slavako@mail.ucf.edu.
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state on a dense and large grid for internal coordinates, using
a larger electronic basis set than those of PES-SM and
PES-PS calculations. Special care is taken in order to ac-
count for the long-range behavior of the surface. We also
obtain for the first time the PDMS of the H3

− electronic
ground state. We constructed FORTRAN subroutines, yielded
as supplementary material to the paper, that calculate PES
and PDMS values for any arbitrary geometry using B-spline
interpolation procedures, and we determine the bound states
of H3

− and D3
−. The RA reaction will be treated in a separate

study.
The article is organized in the following way. In Sec. II,

we discuss the calculation of the new PES and the interpo-
lation procedure. In Sec. III, we compare the new PES with
the PES from previous studies. Section IV is devoted to
the calculation of bound levels of H3

− and D3
− and Sec. V

presents our results on the dipole moment of H3
−. Section VI

is the conclusion. Atomic units �a.u.� for distances �1 a.u.
=0.052 917 7 nm� and for energies �1 a.u.
=219 474.631 37 cm−1� will be used throughout the paper,
except otherwise stated.

II. AB INITIO CALCULATION AND INTERPOLATION
OF THE H3

− GROUND STATE POTENTIAL
SURFACE

As in Ref. 10, we used the coupled-electron pair ap-
proximation �CEPA-2� method,50 which is part of the MOL-

PRO package.51 It is a nonvariational variant of the configu-
ration interaction method for closed-shell molecules. Here
we used a considerably larger basis set, AV5Z with spdfg
basis functions from the MOLPRO basis library, and a much
larger number of geometries, than in Refs 10 and 11. The
reasons for choosing this method and a comparison with
other ab initio methods are presented in Appendix, Sec. 1.

As explained below, the H3
− molecule is weakly bound

by long-range electrostatic forces with no electron exchange.
We defined a three-dimensional �3D�-grid in Jacobi coordi-
nates: r—the distance between two protons, R—the distance
from the center of mass of the two protons to the third pro-

ton, and �—the angle between vectors R� and r�. The grid in r
is uniform from r=0.8 a.u. to r=2.4 a.u. and changes by a
step �r=0.2 a.u. The grid in � changes from 0° to 90° by a
constant step of ��=15°. The grid in R was chosen denser
for small R than for large R: the grid points Ri were calcu-
lated according to Ri=1.5+0.452 exp�i /10� �in a.u.� with i
=1,2 , ¯ ,48, which makes R changing from 1.9995 to
56.4227 a.u. Therefore, the calculations were performed for
9�7�48=3024 geometries. Notice that the above grid
starts at a smaller value of r=0.8 a.u. than in Refs. 10 and
11 �r=1 a.u.�. Indeed, we found that a grid starting at
r=1 a.u. cannot properly represent the repulsive part of the
H2 ground state potential curve �at fixed R and �� and gives
an appreciable error in energies obtained of the lowest H2

vibrational levels and, as a result, a comparable error in dis-
sociation

energies of H3
−→H2�v , j�+H− when R→�. We also used a

denser grid in � and a longer and denser grid in R than in
Refs. 10 and 11.

For each geometry, we calculated the potential energy of
the H3

− ground state, and the components of the PDM vector
with respect to the principal axes of inertia. The obtained ab
initio PES and PDMS were used to prepare FORTRAN sub-
routines that calculate PES and PDMS for any arbitrary ge-
ometry. The FORTRAN subroutines are available in the
supplementary material72 and can be provided by the authors
upon request. Inside the 3D box r� �0.8;2.4� ,R
� �1.9995;56.4227�, �� �0;360°� �central region in Fig. 1�
the procedures interpolate the surfaces using the 3D B-spline
method. Outside of the box, the procedures rely on analytical
formulas for the extrapolation of PES and PDMS. To sim-
plify the description of this region, we divided the r�R con-
figuration space in four different parts �I-IV� surrounding the
ab initio rectangle �Fig. 1�. Regions “ab initio“ and II are the
only ones relevant to bound and scattering states of the sys-
tem with energies �2 eV above the H2�v=0, j=0�+H− dis-
sociation. Therefore, the extrapolation procedure for the PES
and PDMS in the two regions should be physically justified.
In contrast, wave functions of bound and continuum states
with such energies vanish in regions I, III, and IV, and em-
pirical formulas will be used. As it will be discussed in
Sec. IV, the extrapolation is needed to map the configuration
space in Jacobi coordinates on the space of hyperspherical
coordinates, which will be used for bound state and scatter-
ing calculations.

In region II, we represent the long-range �in R, at fixed r
and �� potential VLR for the interaction between H2 and H−

as52

VLR�R;r,�� = Das�r� +
C3

th

R3 +
C4

th

R4 ,

with

0 1 2 3 4 5
r (a.u.)

1

2

4
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16

32

64

R
(a

.u
.)

ab initio

R

r

γ

IV

III

II

I )

ρ2

ρ1

x

Z

X

FIG. 1. The five regions of the configuration space in Jacobi coordinates
R ,r defined for the PES calculations, for all values of � �see the text�.
Notice that R is given on a logarithmic scale. The central rectangle repre-
sents the region of calculated ab initio points, where a 3D B-spline interpo-
lation is used. Different methods were used for the extrapolation of the PES
and PDMS in regions I-IV �see text�. The arcs of a circle �dashed lines�
represent lines of fixed hyper-radii � �see Sec. IV� for two values, �1

=2 a.u. and �2=8 a.u. The X, Y, and Z axes �needed to specify the com-
ponents of the PDM vector� are the axes of principal moments of inertia.
Their orientation is indicated in the figure. The Y-axis is out the plane of H3

−.
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C3
th = − Q�r�P2�cos �� and

�1�
C4

th = − ��0�r� + �2�r�P2�cos ���/2,

where the first term Das�r� is the sum of H− and H2 energies
at a given internuclear distance r of the H2 molecule. The
second term is the interaction between the electric charge of
H− with the quadrupole moment Q�r� of H2 �taken from Ref.
53�, and the third term is the interaction of the dipole mo-
ment of H2 induced by H−, involving the second order Leg-
endre polynomial P2�cos ��. The functions �0�r� and �2�r�
are the isotropic and anisotropic polarizabilities of H2, for
which we used the analytical functions given in Ref. 11 that
were obtained by fitting the numerical values from Ref. 54.
The dispersion energy varying as 1 /R6 and other smaller
terms are neglected, which is a good approximation because
the long-range expansion is only used for R�56.4 a.u. No-
tice that the leading term is attractive for �=0° and repulsive
for �=90°.

In region I we used the following extrapolation formula
in r for fixed R and �:

VSR�r;R,�� = a�R,��e−b�R,��r, �2�

where a�R ,�� and b�R ,�� are functions of R and � that are
obtained considering the two ab initio energies V�r
=0.8;R ,�� and V�r=1;R ,�� calculated at the first two val-
ues of the coordinate r. In this way, we obtain the quantities
a and b given on a two-dimensional �2D� grid of points in
the �R ,�� space. Then we used the 2D B-spline interpolation
to obtain smooth 2D functions a�R ,�� and b�R ,��.

In region III, we extrapolate the PES in r and at fixed R
and � using a dispersion-like expression

VLR�r;R,�� = D0�R,�� −
C6�R,��

r6 , �3�

where the D0�R ,�� and C6�R ,�� �always positive� coeffi-
cients are obtained in a way similar to the coefficients a and
b, considering the two last points V�r=2.2 a.u. ;R ,�� and
V�r=2.4 a.u. ;R ,��. They are also interpolated using the 2D
B-spline method for arbitrary values of R and �.

The behavior of the PES in region IV is described by the
short-range �in R� repulsive expression at given values of r
and �

VSR�R;r,�� = A�r,��e−B�r,��R. �4�

The A�r ,�� and B�r ,�� coefficients are obtained in a way
similar to the one described above, considering the first two
values of the ab initio potential energy V�R=2 a.u. ;r ,�� and
V�R=2.052 a.u. ;r ,��, and are further interpolated for any
�r ,�� using the same 2D B-spline procedure.

We show in Fig. 2 the H3
− PES as a function of two

internuclear distances, r1 and r2 for two values �180° and
90°� of the bonding angle 	. These coordinates are conve-
nient to describe main features of the PES. As expected, the
figure is symmetric with respect to the r1↔r2 exchange, and
shows the shallow potential well in each coordinate �with the
minimum labeled with M�, separated by a potential barrier
�with the maximum labeled with B� for the exchange of two

identical nuclei. As in previous studies, the lowest energy is
found for a linear configuration as expected from Eq. �1�.
The position and energy of M and B are reported in Table I,
together with other characteristic parameters of the PES.

III. COMPARISON WITH PREVIOUS STUDIES

Figures 3–5 illustrate the comparison of the PES in Ja-
cobi coordinates obtained in the present study with the re-
sults of Refs. 10 and 11 for three values of �=0°, 30°, and
90°, respectively. Each figure gives the PES for one value of
� and eight values of r versus the coordinate R. The origin of
potential energy yielded by the ab initio procedure corre-
sponds to an infinite separation of all electrons and nuclei.
Because the absolute energy of the PES-PS �Ref. 11� is un-
known, the origin of this surface is chosen in such a way that
the asymptotic energy of the infinite separation between
H2�r=1.4 a.u.� and H− is the same as in the present study.
We would like to stress that the present CEPA-2 method
gives the energy of H3

− at R→� exactly equal to the sum of
H2 and H− energies calculated separately within the same
approach �Table I�. Moreover, the asymptotic energy is re-
markably accurate: the hydrogen electronic affinity is ob-
tained at 6019.97 cm−1, in good agreement with experimen-
tal value 6082.96 cm−1.56 Similarly, our electronic binding
energy of H2, EH2�re�=−1.174 252 at its equilibrium distance
re=1.4 only differs by 49 cm−1 from the almost exact Born–
Oppenheimer energy computed by Wolniewicz and
Dressler.55 These results confirm the good accuracy of the
total energy obtained with the CEPA-2 method.

The insets of these figures, together with the data in
Table I demonstrate that the present ab initio energies are
systematically lower that those of Ref. 10 for all geometries.
For instance, the potential well depth has increased by 0.01%
�around 160 cm−1� at re=1.4 a.u. This was expected, as we
use the same CEPA-2 method than in Ref. 10 with a larger
basis set, leading then to a PES with an improved accuracy.
The overall behavior of the present PES and PES-SM as a
function of R is similar at small and large distances. In con-
trast, a noticeable difference of PES-PS with the present re-

FIG. 2. Energy contour plots of the H3
− electronic ground state PES in the

space of the two internuclear distances �r1 and r2� for two values of the
bonding angle 	 defined in each plot. Successive contours differ by 0.006
a.u. The dissociation energy Das=−1.701 682 8 a.u. of the PES corresponds
to the infinite separation between H2�re=1.403 a.u.�� and H− �see Table I�.
The energy minimum �indicated by M� is obtained for a linear configuration,
and the top of the potential barrier is labeled with B. The lowest contour
corresponds to the energy of 
1.7034 a.u. �left plot� and 
1.6974 a.u. �right
plot�.
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sults and the PES-SM is the presence of a potential well at
�=90° near R=7.6 a.u. �see the inset in Fig. 5� with a sig-
nificant depth ��90 cm−1 for r=1.4 a.u.�. For �=90° the
C3 /R3 long-range energy contribution is positive and C4 /R4

is negative �see Eq. �1��. Therefore, their sum combined with
the short-range interaction produces a potential curve �for
fixed r and � near 90°� that has a pronounced minimum in
PES-PS and just a shoulder-like feature in the present PES
�see inset �c� in Fig. 5�. The curve is repulsive asymptoti-
cally. A possible reason for the above differences is the
somewhat smaller basis set �d-aug-cc-PVTZ� used in calcu-
lation of PES-PS.11

The numerical data available about PES-BT19,23 is given
in Table I. Since the calculation method �diatomics-in-
molecule� explicitly uses the ab initio data �wave functions
and energies� obtained for fragments �H2,H−,H2

− ,H3� in
separate ab initio calculations, it gives automatically the cor-
rect dissociation energy.

Since we have calculated PES at relatively large dis-
tances R, we can extract ab initio values �labeled with “ai”�
of the corresponding long-range coefficients C3

ai and C4
ai and

compare them with the theoretical values C3
th and C4

th of Eq.
�1�. We first make a fit of C4

ai to the ab initio data by fixing
C3

ai to the theoretical value C3
th. In this way the value of C4

ai

agrees with the value of C4
th within 0.3% for �=0, and 5%

for �=90° at r=1.4 a.u. Then, we did the opposite: we fitted
C3

ai to the ab initio data by fixing C4
ai to C4

th. In this case, we
found that fitted and theoretical values of C3 agree within
0.1% for �=0 and 2% for �=90° at r=1.4 a.u. The PES-PS
differs significantly from the analytical long-range behavior
of Eq. �1�. Surprisingly, the long-range behavior of the
PES-PS is quite different from ours and the one of PES-SM,
and probably inaccurate due to the matching procedure be-
tween the long and short distances used by these authors.

IV. VIBRATIONAL STATES OF H3
− AND D3

−

As mentioned in the introduction, one of the motivations
of this study is to describe low-energy collisions between H2

TABLE I. Different quantities characterizing the H3
− ground state PES obtained in the present study compared

with previous calculations �Refs. 10, 11, and 19�.

Quantity Present study Ref. 10 Ref. 11 Ref. 19

Das
a �a.u.� 
1.701 683 
1.700 95 n/a n/a

re
b �a.u.� 1.403 1.40 n/a n/a

Bc �a.u.� 
1.685 09 
1.685 62 n/a n/ad

Position of B
r1, r2 �a.u.�, 	=0 1.996, 1.996 1.997, 1.997 1.999, 1.999 1.74, 1.74
r ,R �a.u.�, �=0 1.996, 2.994 1.997, 2.996 1.999, 2.999 1.74, 2.61
Me �a.u.� 
1.703 511 
1.702 70 n/a n/a
Position of M
r ,R �a.u.�, �=0 1.421, 6.069 1.416, 6.183 1.419, 5.915 n/a
B−M �cm−1� 4042.9 3748.62 3786.42 n/a
Das−M �cm−1� 401.2 384.05 384.27 443.60

Energies obtained separately for H2 and H−

Present study Ref. 10 Ref. 55 Ref. 56
EH2�r=1.4� 
1.174 252 
1.173 68 
1.174 475 7 n/a
EH− 
0.527 429 
0.527 27 n/a 0.527 716f

aAsymptotic energy at infinite separation between H2�re� and H−.
bInternuclear distance corresponding to the minimum of the H2 dimer potential.
cEnergy of the maximum of the barrier, B in Fig. 2.
dReference 19 gives the height of the barrier �0.624 eV� with respect to the H2�v=0, j=0�+H− dissociation.
eEnergy of the PES minimum, M in Fig. 2.
fEnergy is obtained by adding 0.5 a.u. to the experimental affinity �Ref. 56� of H−.

2 4 8 16 32
R (a.u.)

-1.7

-1.69

-1.68
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.)

-1.703
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r=1.4

r=1.6

r=1.2

r=1.8

r=2.0

r=1.0

r=2.2

r=2.4

r R

FIG. 3. Comparison of the present H3
− PES �circles� in Jacobi coordinates

with the results from Ref. 10 �crosses on the dashed lines� and Ref. 11 �solid
blue lines with no symbols� for �=0°. The PES are shown as a function of
R for eight different values of r. The r=0.8 a.u. curve is not shown here
because it is located at a higher energy. Symbols indicate the geometries for
which the actual ab initio calculations have been performed. The continuous
lines connecting the points are obtained by interpolation. No ab initio ener-
gies are available for the PES of Ref. 11. The solid lines without symbols
are obtained directly from the analytic formula and the FORTRAN subroutine
provided in Ref. 11. Notice the logarithmic scale in R variable. The inset
enlarges the region of the minimum of the PES close to equilibrium region
at r=1.4 a.u.
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and H−, and to investigate the formation of H3
− in such col-

lisions. Therefore, we need an approach which treats both
bound and continuum states of the triatomic anion �including
rearrangement of nuclei�. We use the Smith–Whitten hyper-
spherical coordinates:57 a hyper-radius � and two hyper-
angles � ,�, which can be defined for the three identical par-
ticles by the three internuclear distances ri , �i=1,2 ,3� as

ri = 3−1/4��1 + sin � sin�� + i� , �5�

where 1=2� /3, 2=−2� /3, and 3=0. We also employ the
adiabatic separation between hyper-radius and hyperangles,
which are known to be well adapted to atom-molecule in-
elastic and reactive scattering involving identical particles.
The dynamics is treated within the framework of the slow
variable discretization �SVD� method58–60 that allows us to
account easily for nonadiabatic couplings25 between hyper-
spherical adiabatic channels. We briefly recall below the
main steps of our approach, which is discussed in greater
details in Refs. 59 and 60.

The eigenstates � of three particles interacting through a
potential V depending only on the three internuclear dis-
tances are obtained by solving the Schrödinger equation with
the following Hamiltonian expressed in hyperspherical coor-
dinates � ,� in the center-of-mass frame:57

−
1

2�
�−5 �

��
�5 �

��
+

�2

2��2 + V , �6�

where �=m /�3 is the three-body reduced mass and m is the
mass of each of the three identical particles. The operator �
above is the grand angular momentum.61,62 It depends only
on the set � of five angles, which include the three Euler
angles �for the orientation of the molecular frame in the labo-
ratory frame� and the hyperangles � and �. If the total angu-
lar momentum J=0, � depends only on the two hyperangles.
The explicit form of �2 is given, for example, by Eq. �27� of
Ref. 62

�2 = −
4

sin�2��
�

��
sin�2��

�

��
−

4

sin2���
�2

��2 +
2JX

2

1 − sin �

+
2JZ

2

1 + sin �
+

JY
2

sin2 �
+

4i cos �JY

sin2 �

�

��
, �7�

where JX, JY, and JZ are the components of the angular mo-
mentum along the principal axes of inertia. The orientation
of the axes is approximately indicated in Fig. 1. After rescal-
ing the wave function � as �=�−5/2�, the Hamiltonian for
the new function � is written as

H = T� + Had, �8�

where

T� = −
1

2�

�2

��2 , �9�

and

Had =
�2 + 15/4

2��2 + V . �10�

The eigenfunctions ��� ,�� of the above Hamiltonian are
sought as an expansion over the basis functions ya,j�� ,��
with unknown coefficients ca,j

���,�� = �
a,j

ya,j��,��ca,j . �11�

The basis functions ya,j�� ,�� are constructed as products

ya,j��,�� = � j����a,j��� , �12�

where the functions � j��� are discrete variable representation
�DVR�-like functions localized at DVR grid points � j along
the hyper-radius. As in our earlier study,63,64 here we used the
plane wave DVR functions. The functions �a,j��� are the
adiabatic hyperspherical states obtained by solving the three-
body Schrödinger equation at fixed �=� j, i.e., they are eigen-
states of Had at fixed �=� j with eigenvalues Ua�� j�
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Had
�=�j�a,j��� = Ua�� j��a,j��� . �13�

The functions Ua�� j� are usually referred to as hyper-
spherical adiabatic potentials. Inserting the expansion of Eq.
�11� into the Schrödinger equation H�=E� reduces the
equation to a generalized eigenvalue problem for coefficients
ca,j with eigenvalues E

�
a�j�

�	� j�
 −
1

2�

�2

��2 
� j��Oa�j�,aj + 	� j�
Ua���
� j��	a�a�cj�a�

= E�
a�j�

	� j�
� j��Oa�j�,ajcj�a�, �14�

where Oa�j�,aj are the overlap integrals �in the � space� be-
tween adiabatic states �a�,j� and �a,j

Oa�j�,aj = 	�a�,j�
�a,j��. �15�

The subscripts � and � at kets in the above expressions refer
to the integration coordinate of the bracket.

The system �14� of equations resembles to the system of
coupled-channel equations, where nonadiabatic couplings

	�a�

�

��

�a�

d

d�

and

	�a�

�2

��2 
�a� ,

are replaced with the overlap matrix elements Oa�j�,aj. The
use of overlap matrix elements instead of the derivatives of
adiabatic states with respect to � simplifies significantly the
numerical solution of the equation,59,60 and is the main ad-
vantage of the SVD method.

We restricted the present computations to energies and
wave functions of bound states for two H3

− and D3
−, with total

angular momentum J=0. The hyperangle � varies in the in-
terval �0,� /2�, while the full interval of variation for the
second hyperangle, �, is �0,2��. However, for three identi-
cal particles, the interval along � can be restricted to
�−� /2,−� /6� for wave functions of the A1� or A2� irreducible
representations �irreps in the following� of the molecular
symmetry group �D3h�, and to the interval �−� /2,+� /2� for
wave functions of the E� irrep. Irreps with odd parities, A1�,
A2�, and E� are not allowed for J=0. This is because the
inversion applied to the rotational part of the total wave
function is reduced to the rotation of the system about the
Y-axis by �.65 The J=0 rotational states are isotropic, so
only the even parity is allowed. The hyper-radius � can vary
in the interval �0,��. In this study, it varies from 1 to
120 a.u. for H3

− a.u. and from 1 to 80 a.u. for D3
−. In the

numerical calculation, we have used equal masses m
=1837.3621 a.u. for all three atoms in the H3

− molecule. This
value is the sum of the hydrogen mass and one third of
electron mass. Similarly, we took m=3670.8162 a.u. �which
is the sum of the deuterium mass and one third of electron
mass� for D3

−.
The resulting adiabatic potentials of A1� and A2� irreps are

shown in Fig. 6 for H3
− and in Fig. 7 for D3

−. The curves of E�

irrep are not shown in Figs. 6 and 7. The lowest E� curves
are almost identical to the A1� and A2� curves and would be
indistinguishable from them in the figures because for low
vibrational levels, the energies of levels are independent on
the symmetry �A1� ,A2�, or E�� of wave functions with respect
to the proton exchange between the dimer and the H− ion.
�We assume here that the dimer is in a particular rovibra-
tional state such that the proton exchange is made without
changing the dimer state. The energy does depend on the H2

rovibrational state�. At large �, all adiabatic curves dissociate
into an atom+dimer system characterized by the rovibra-
tional state �vd , j� of the dimer.

Some of the adiabatic curves in Figs. 6 and 7 exhibit
avoided crossings at energies above �4000 cm−1. Dynamic
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coupling between hyperspherical adiabatic states is mostly
determined by the avoided crossings and responsible for nu-
clei exchange above the potential barrier identified in Fig. 2.
Such transitions are much less probable at smaller energies
as each adiabatic state is only weakly coupled to other adia-
batic states of the same irrep. As a consequence, only one
component �a in the expansion of Eq. �11� is dominant. Each
adiabatic state for a given irrep � is correlated with a definite
pair of quantum numbers �vd , j�, and can be approximately
characterized by these two quantum numbers. The value �
of the projection of the H2 angular momentum j on the axis
connecting the dimer with the atom is also a relevant quan-
tum number. For J=0, � is always zero and, therefore is not
specified in Figs. 6 and 7.

To characterize completely a bound state of the trimer,
an additional quantum number vt is needed for the excitation
within each adiabatic state �along the hyper-radius�. There-
fore, the bound states are characterized by four approximate
quantum numbers � , j ,vt ,vd and two exact quantum num-
bers J and �. At high energies, the mixing between different
� , j ,vt ,vd for given J and � becomes important.

We summarized in Table II the present H3
− bound state

energies and those of Ref. 10 labeled with the set of quantum
numbers J , j ,� ,vt ,vd ,�. In agreement with Ref. 10, we
found four vibrational energies levels of the A1� irrep and one
other level of the A2� irrep. We also found four more vibra-
tional levels of the A2� irrep. Although their energies are lo-
cated above the vd=0, j=0 dissociation threshold, they are
stable because they cannot dissociate due to the symmetry
restriction. Their binding energies are given in the table with
respect to their first allowed dissociation limit vd=0, j=1. It
is worth noticing that our binding energies for all levels but
one are larger than the energies of Ref. 10, expressing that
the well depth of our potential surface is found about
17 cm−1 deeper than in Ref. 10�. The last bound level of the
A1� irrep has a very small binding energy and may not be

fully converged. The bound state energies of D3
− are given in

Table III. Since the D3
− molecule is heavier than H3

−, it has
more vibrational levels. No data from previous calculation is
available for D3

−.
In Appendix, Sec. 2, we estimate also the role of diago-

nal non-Born–Oppenheimer couplings, which is found to be
smaller or comparable to the accuracy of the present calcu-
lations.

V. PERMANENT DIPOLE MOMENT SURFACE
FOR THE H3

− GROUND STATE

For calculation of different observables �such as the RA
cross section� involving matrix elements of the dipole mo-
ment, the components of the permanent dipole moment for
each geometry should be evaluated. In contrast with neutral
charge distributions, the magnitude of the dipole moment
vector for charged species depends on the origin of the co-
ordinates. The dipole moment approximation for electromag-
netic transitions requires a vector computed with the origin at
the center of mass of the system.

The MOLPRO package delivers also the components of
the permanent dipole moment together with the PES. For a
fixed geometry, the obtained components of the dipole mo-
ment correspond to the coordinate system with the X ,Y ,Z
axes along the principal axes of inertia of the molecule with
the origin at the center of mass of the system. In our nota-
tions, the Y-axis is orthogonal to the plane of H3

−, therefore
DY =0. For �=0° and 90° there is only one non-zero compo-
nent �DZ in our notations�. DZ becomes also equal to zero at
equilateral geometries. For other geometries ���0° or 90°�
there are two nonzero components, DZ and DX. We used the
following convention to label the components: at large val-
ues of R, the component DZ is the largest of the two in

TABLE II. Comparison of energies �in cm−1� of H3
− bound levels obtained in

the present study with those of Ref. 10. Energies in the second and third
columns are given with respect to Das �see Table I�. The binding energies
�fourth and fifth columns� are given with respect to the dissociation limits
D00 �for A1� levels� and D01 �for A2� levels�. The energies in parentheses are
given with respect to D00, to compare with Ref. 10.

J ,� , j ,vt ,vd ,�

Energies above Das Binding energies

Present
study

Calculations
of Ref. 10

Present
study

Calculations
of Ref. 10

0,0 ,0 ,0 ,0 ,A1� 2103.3 2100.6 
70.7 
68.4
0 ,0 ,0 ,1 ,0 ,A1� 2148.4 2147.1 
25.6 
21.9
0 ,0 ,0 ,2 ,0 ,A1� 2168.7 2165.9 
5.4 
3.1
0 ,0 ,0 ,3 ,0 ,A1� 2174.1 2168.7 
0.01 
0.3
D00

a 2174.1 2169.0
0 ,0 ,1 ,0 ,0 ,A2� 2140.3 2140.8 
152.1 �
33.7� n/a �
28.2�
0,0 ,1 ,1 ,0 ,A2� 2215.1 
77.4
0 ,0 ,1 ,2 ,0 ,A2� 2259.3 
33.2
0 ,0 ,1 ,3 ,0 ,A2� 2281.9 
10.6
0 ,0 ,1 ,4 ,0 ,A2� 2290.9 
1.6
D01

b 2292.5 n/a

aAsymptotic energy of H−+H2�vd=0, j=0� dissociation.
bAsymptotic energy of H−+H2�vd=0, j=1� dissociation.

TABLE III. Energies �in cm−1� of D3
− bound levels obtained in the present

study. Energies in the second column are given with respect to Das �see
Table I, Das being the same for H3

− and D3
−�. The binding energies in the third

column are given with respect to the dissociation limits D00 for the A1� levels
and D01 for the A2� levels. The D00 and D01 dissociation D2+D− limits are
calculated with respect to Das and also given in the table.

J ,� , j ,vt ,vd ,� Energies above Das Binding energies

0 ,0 ,0 ,0 ,0 ,A1� 1416.5 
126.2
0 ,0 ,0 ,1 ,0 ,A1� 1474.1 
68.6
0 ,0 ,0 ,2 ,0 ,A1� 1510.1 
32.6
0 ,0 ,0 ,3 ,0 ,A1� 1530.2 
12.5
0 ,0 ,0 ,4 ,0 ,A1� 1539.8 
2.9
0 ,0 ,0 ,5 ,0 ,A1� 1542.7 
0.02
D00

a 1542.7
0 ,0 ,1 ,0 ,0 ,A2� 1419.9 
182.3
0 ,0 ,1 ,1 ,0 ,A2� 1485.0 
117.2
0 ,0 ,1 ,2 ,0 ,A2� 1532.0 
70.3
0 ,0 ,1 ,3 ,0 ,A2� 1563.8 
38.5
0 ,0 ,1 ,4 ,0 ,A2� 1583.7 
18.7
0 ,0 ,1 ,5 ,0 ,A2� 1595.1 
7.2
0 ,0 ,1 ,6 ,0 ,A2� 1600.6 
1.7
0 ,0 ,1 ,7 ,0 ,A2� 1602.3 
0.01
D01

b 1602.3

aAsymptotic energy of D−+D2�vd=0, j=0� dissociation.
bAsymptotic energy of D−+D2�vd=0, j=1� dissociation.
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magnitude and negative, DX being the smallest �in magni-
tude� and positive. The choice of negative DZ at large R
corresponds to the Z-axis oriented from the center of mass of
the molecule toward the H− ion. For small values of R �for
fixed � and r� the two components DZ and DX become com-
parable in magnitude. For such geometries they are identified
by ensuring a smooth variation of the components with de-
creasing R. Notice that because the principal axes of inertia
for H3

− and D3
− are the same, the obtained PDMS are the same

for the two species.
Figures 8 and 9 show ab initio values of the DZ and DX

PDM components for �=30° for all nine values of r
=0.8,1 , ¯ ,2.4 a.u. as a function of R. As one can see from
the figures, the sampling grid of ab initio geometries is dense
enough to perform an interpolation procedure in order to
calculate DZ and DX at any arbitrary geometry. Therefore, in
the central region in Fig. 1, we interpolate the DZ and DX

PDMS using the same 3D B-spline procedure as for the PES
interpolation.

In region II, when R→�, the analytical behavior of the
largest component DZ is known: It decreases with increasing

R as �in a.u.� DZercm-H=−2R /3, where rcm-H is the distance
between the center of mass of H3

− and the H− ion, and e
−1 is the electron charge. The ab initio DZ values confirm
this behavior, so the same formula is used for extrapolation
of DZ in region II. Outside the central region in Fig. 1, the
PDMS �except the DZ components in region II� are extrapo-
lated using an empirical analytical formula. The empirical
formula is obtained by inspecting the PDMS variations close
to the boundaries of the ab initio region. The smallest com-
ponent DX varies at large R as kx�r ,�� /R, where kx�r ,�� is
fixed by the value of the PDMS at the final point Rf

=56.4227 a.u. of the grid, i.e., kx=V�Rf ;r ,��Rf. As previ-
ously, we obtain a surface for the kx�r ,�� function, which is
computed at any geometry using a 2D B-spline interpolation.
For the extrapolation of the PDMS in region I we found
�empirically� a quadratic �for DZ� and linear �for DX� depen-
dencies along r with coefficients depending on R and �,
which are evaluated from the corresponding boundary values
of DZ and DX, respectively. Similarly, in region III and IV,
we assumed a linear dependency along r and R, respectively,
with coefficients fixed by the boundary values of the PDMS.

VI. SUMMARY AND CONCLUSIONS

In the present study we have obtained accurate potential
energy surface and components of the permanent dipole mo-
ment for the H3

− molecular ion. The surfaces were calculated
on a large number of geometries that covers short, interme-
diate, and long-range regions. In total, the ab initio calcula-
tions were made for 3024 geometries. The large basis and
grid used in the calculations allows us to suggest that the
obtained PES is more accurate than the results of the previ-
ous study.10,11 Comparison of the long-range behavior of the
obtained PES with the expected analytical behavior of the
PES confirms this conclusion. No previous data on the dipole
moment of H3

− is available.
The obtained ab initio values for potential energy sur-

face and the dipole moment components were used to con-
struct FORTRAN interpolation/extrapolation subroutines that
calculate the energies and dipole moments for any arbitrary
geometry. The subroutines interpolate the surfaces using B
splines inside the region of ab initio geometries and extrapo-
late the surfaces outside of the region using analytical for-
mulas based on the theoretical asymptotic behavior. The sub-
routines are available in the supplementary material.72 The
energy surface can be used for all isotopologues of H3

−, the
dipole moment surfaces in the present form can only be used
for H3

− and D3
− isotopologues. For the H2D− and D2H− mol-

ecules, the dipole moments should be transformed to account
for the different orientation of axes of inertia. Using the new
potential surfaces, we have calculated the bound states for
the H3

− and D3
− isotopologues.

A relatively large magnitude 
D
�4 a.u. of the dipole
moment near equilibrium positions for bound vibrational
states and a large size of the electronic clouds of H− suggest
that the cross section for the formation of H3

− stable mol-
ecules by the RA between H2 and H− is significant. A rela-
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tively large dipole moment and the existence of several
bound levels suggests also that the H3

− can be detected using
IR photoabsorption spectroscopy.

The calculated energies of H3
− bound states can also be

used to search for H3
− in the cold ISM with a large fraction of

ionized hydrogen �to have enough free electrons�. We have
developed a model for the formation of H3

− in RA collisions
between H2 and H−. In the model, H− is formed by dissocia-
tive attachment of the electron to H2. If a photoabsorption
signal from H3

− �in mm range� is detected, this would also be
a signal for the presence of H− in the ISM: H− itself cannot
be detected directly. The details of the model as well as the
calculated rates of RA collisions between H2 and H− will be
discussed in a forthcoming publication.
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APPENDIX: ON THE ACCURACY OF THE PRESENT
AB INITIO RESULTS

1. Comparison between MRCI and CEPA-2 methods

In this appendix, we discuss briefly the comparison of
the results obtained using the CEPA-2 and multi reference
configuration interaction �MRCI� ab initio methods. The
CEPA method has been introduced about thirty years ago by
Meyer and collaborators. Although the CEPA methods pro-
vide accurate results �at least, for certain molecules� and are
not very expensive numerically �see, for instance, the recent
review of Ref. 66�, they have never been very popular in
quantum chemistry calculations, even if a small part of the
quantum chemistry community is still developing CEPA-
type methods.66–69

To demonstrate the accuracy of the CEPA-2 method that
has been employed for the present study, we have also per-
formed calculations with the MRCI method using the same
basis in the CEPA-2 calculation. In the MRCI calculations,
all four electrons of H3

− are treated as active. We have used
four active �self consistent field� orbitals. We have also veri-
fied that further increase of the number of active orbitals
does not change the obtained energies for the geometries of
interest. As pointed out above, at small distances near equi-
lateral geometries the ion is unstable due to the electron au-
todetachment. Therefore, CEPA-2 and MRCI are not con-
verging at such geometries with the employed basis.

The result of the comparison is given in Figs. 10 and 11.
Figure 10 compares the ab initio energies of H3

− obtained
using CEPA-2 and MRCI methods for fixed values of �=0
and r=1.4 and different values of R. The figures includes
also the results of MRCI calculations with Pople and David-
son corrections included �see Ref. 70 and references therein�.
The asymptotic limits of the four curves are quite different.

The CEPA-2 asymptotic energy is the closest one above the
“best available” estimation 1.702 191 8 for the sum of H2

and H− energy �see Table I�. We recall that CEPA-2 method
gives the energy of H3

− at R→� that is exactly equal to the
sum of H2 and H− energies calculated separately for H2 and
H− �see Table I�. Based on this observation, we conclude that
CEPA-2 provides better results than the corrected or uncor-
rected MRCI method.

Figure 11 shows the same curves as Fig. 10 but the
asymptotic limits of the four curves are brought to the same
value. As one can see the agreement between energies rela-
tive to the dissociation limit is much better than the agree-
ment in terms of absolute energies. Notice that the potential
well depth in Fig. 11 strongly depends on the correction
added to the bare MRCI value, the latter being very close to
the CEPA-2 one.
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methods. The “exact” H−+H2 energy is obtained as the sum of the Born–
Oppenheimer energy of the H2 dimer for r=1.4 a.u. �Ref. 55�, energy of H,
0.5 a.u., and the experimental affinity of H− �Ref. 56� �see Table I�.
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FIG. 11. CEPA-2 and MRCI energies relative to their dissociation limit for
r=1.4 and �=0. The four curves of Fig. 10 are brought to the same
asymptotic limit by adding the corresponding energy. Notice that the R
coordinate is shown in the logarithmic scale.
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The remaining inaccuracy ��100 cm−1 for CEPA-2� in
the absolute energies should probably be attributed to the
limited basis used in the present study.

2. On the diagonal non-Born–Oppenheimer correction

Here, we discuss the diagonal non-Born–Oppenheimer
correction �DNBOC� to the obtained H3

− PES, which may be
expected to have a significant contribution due to the low H3

−

mass. As mentioned above, the H3
− molecule is a loosely

bound H2+H− complex. Therefore, for the estimation of DN-
BOC we can model it as the H2 dimer with the internuclear
distance r perturbed by the presence of H− located at the
distance R with the angle �. Therefore, the DNBO correc-
tion, �r ,R ,�� can be represented as 0�r�+1�r ,R ,��, where
0�r� is DNBOC of the dimer, and 1�r ,R ,�� is the correc-
tion caused by the perturbation of the dimer due to the pres-
ence of H−; 1�r ,R ,��→0 when R→�. We can estimate the
order of magnitude of the 1�r ,R ,�� term for geometries of
the interest �near the minimum of H2� as 1�r ,R ,�� /0�r�
��U�H2� /U�H2�, where �U�H2� is the change in H2 energy
due to the perturbation, i.e., the depth of the potential well of
the H2+H− complex, and U�H2� is the energy of the unper-
turbed H2 dimer near the equilibrium. For U�H2� it is reason-
able to take the energy of chemical bond of H2, i.e.,
0.174 475 7 a.u. Using these numbers we obtain
1�r ,R ,�� /0�r��1 /200. The value 0�r=1.4� is about
100 cm−1,55,71 which gives the estimation for 1�r ,R ,�� of
the order of 0.5 cm−1. It is comparable to the accuracy of the
present calculation �in terms of energies relative to the H2

+H− dissociation limit�.
The function 0�r� is known55,71 and can be added to the

Born–Oppenheimer PES obtained in the present study. In
calculation of bound states of H3

− we did not include DN-
BOC. For the all bound states of H3

− and D3
−, the state of the

dimer is the ground rovibrational level. Therefore, the bind-
ing energies shown in Tables II and III are insensitive to the
inclusion of the correction. The inclusion of DNBOC is im-
portant if higher energies are involved, and especially when
the H2D− and D2H− isotopologues are considered.
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