209 research outputs found

    Універсітэт. - № 11 (2114)

    Get PDF
    PERMON makes use of theoretical results in quadratic programming algorithms and domain decomposition methods. It is built on top of the PETSc framework for numerical computations. This paper describes its fundamental packages and shows their applications. We focus here on contact problems of mechanics decomposed by means of a FETI-type non-overlapping domain decomposition method. These problems lead to inequality constrained quadratic programming problems that can be solved by our PermonQP package.11510

    Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems

    Get PDF
    This article describes a bridge between POD-based model order reduction techniques and the classical Newton/Krylov solvers. This bridge is used to derive an efficient algorithm to correct, "on-the-fly", the reduced order modelling of highly nonlinear problems undergoing strong topological changes. Damage initiation problems are addressed and tackle via a corrected hyperreduction method. It is shown that the relevancy of reduced order model can be significantly improved with reasonable additional costs when using this algorithm, even when strong topological changes are involved

    Predictive control of systems with fast dynamics using computational reduction based on feedback control information

    Get PDF
    Predictive control is a method, which is suitable for control of linear discrete dynamical systems. However, control of systems with fast dynamics could be problematic using predictive control. The calculation of a predictivecontrol algorithm can exceed the sampling period. This situation occurs in case with higher prediction horizons and many constraints on variables in the predictive control. In this contribution, an improving of the classical approach is presented. The reduction of the computational time is performed using an analysis of steady states in the control. The presented approach is based on utilization of information from the feedback control. Then this information is applied in the control algorithm. Finally, the classical method is compared to the presented modification using the time analyses. © Springer International Publishing Switzerland 2015

    Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway

    Get PDF
    Microtubules of all eukaryotic cells are formed by α- and β-tubulin heterodimers. In addition to the well known cytoplasmic tubulins, a subpopulation of tubulin can occur in the nucleus. So far, the potential function of nuclear tubulin has remained elusive. In this work, we show that α- and β-tubulins of various organisms contain multiple conserved nuclear export sequences, which are potential targets of the Exportin 1/CRM1 pathway. We demonstrate exemplarily that these NES motifs are sufficient to mediate export of GFP as model cargo and that this export can be inhibited by leptomycin B, an inhibitor of the Exportin 1/CRM1 pathway. Likewise, leptomycin B causes accumulation of GFP-tagged tubulin in interphase nuclei, in both plant and animal model cells. Our analysis of nuclear tubulin content supports the hypothesis that an important function of nuclear tubulin export is the exclusion of tubulin from interphase nuclei, after being trapped by nuclear envelope reassembly during telophase

    Rotating Gliding Arc: Innovative Source for VOC Remediation

    Get PDF
    The large-scale plasma treatment of waste gas in industrial or municipal conditions requires high efficiency of plasma conversion process at high processing speed, i.e., large volumetric flow. The integration of the plasma unit into existing systems puts demands on the pipe-system compatibility and minimal pressure drop due to adoption of plasma processing step. These conditions are met at the innovative rotating electrode gliding arc plasma unit described in this article. The system consists of propeller-shaped high voltage electrode inside grounded metallic tube. The design of HV electrode eliminates the pressure drop inside the air system, contrary the plasma unit itself is capable of driving the waste gas at volumetric flow up to 300 m3/hr for 20 cm pipe diameter. In the article the first results on pilot study of waste air treatment will be given for selected volatile organic compounds together with basic characteristic of the plasma unit used

    Heat transfer measurements with TOIRT method

    Full text link
    Temperature Oscillation Infra-Red Thermography (TOIRT) method was used to measure heat transfer coefficients between a at surface and a confined impinging jet generated by an impeller in a difusor and baffled vessel. The TOIRT method is based on measuring a phase-lag between the oscillating heat flux applied to the heat transfer surface and the surface temperature response using a contactless infra-red camera. The phase lag is in a direct relationship with the heat transfer coefficient

    Air Pollution and Lymphocyte Phenotype Proportions in Cord Blood

    Get PDF
    Effects of air pollution on morbidity and mortality may be mediated by alterations in immune competence. In this study we examined short-term associations of air pollution exposures with lymphocyte immunophenotypes in cord blood among 1,397 deliveries in two districts of the Czech Republic. We measured fine particulate matter < 2.5 μm in diameter (PM(2.5)) and 12 polycyclic aromatic hydrocarbons (PAHs) in 24-hr samples collected by versatile air pollution samplers. Cord blood samples were analyzed using a FACSort flow cytometer to determine phenotypes of CD3(+) T-lymphocytes and their subsets CD4(+) and CD8(+), CD19(+) B-lymphocytes, and natural killer cells. The mothers were interviewed regarding sociodemographic and lifestyle factors, and medical records were abstracted for obstetric, labor and delivery characteristics. During the period 1994 to 1998, the mean daily ambient concentration of PM(2.5) was 24.8 μg/m(3) and that of PAHs was 63.5 ng/m(3). In multiple linear regression models adjusted for temperature, season, and other covariates, average PAH or PM(2.5) levels during the 14 days before birth were associated with decreases in T-lymphocyte phenotype fractions (i.e., CD3(+) CD4(+), and CD8(+)), and a clear increase in the B-lymphocyte (CD19(+)) fraction. For a 100-ng/m(3) increase in PAHs, which represented approximately two standard deviations, the percentage decrease was −3.3% [95% confidence interval (CI), −5.6 to −1.0%] for CD3(+), −3.1% (95% CI, −4.9 to −1.3%) for CD4(+), and −1.0% (95% CI, −1.8 to −0.2%) for CD8(+) cells. The corresponding increase in the CD19(+) cell proportion was 1.7% (95% CI, 0.4 to 3.0%). Associations were similar but slightly weaker for PM(2.5). Ambient air pollution may influence the relative distribution of lymphocyte immunophenotypes of the fetus

    Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway

    Get PDF
    Microtubules of all eukaryotic cells are formed by α- and β-tubulin heterodimers. In addition to the well known cytoplasmic tubulins, a subpopulation of tubulin can occur in the nucleus. So far, the potential function of nuclear tubulin has remained elusive. In this work, we show that α- and β-tubulins of various organisms contain multiple conserved nuclear export sequences, which are potential targets of the Exportin 1/CRM1 pathway. We demonstrate exemplarily that these NES motifs are sufficient to mediate export of GFP as model cargo and that this export can be inhibited by leptomycin B, an inhibitor of the Exportin 1/CRM1 pathway. Likewise, leptomycin B causes accumulation of GFP-tagged tubulin in interphase nuclei, in both plant and animal model cells. Our analysis of nuclear tubulin content supports the hypothesis that an important function of nuclear tubulin export is the exclusion of tubulin from interphase nuclei, after being trapped by nuclear envelope reassembly during telophase

    Heat transfer in a confined impinging jet with swirling velocity component

    Full text link
    Heat transfer measurements based on an infrared experimental method (TOIRT) are compared with CFD simulations of a confined impinging jet with tangential velocity component. The tangential velocity component added to a pure impinging jet introduces into the flow field and heat transfer some similarities with real industrial processes like agitated vessels with axial-flow impellers. The tangential velocity component significantly influences the velocity field and heat transfer intensity in the stagnant region when compared to the classic impinging jet characteristics. Several turbulence models were used in numerical simulations of an agitated vessel with axial-flow impeller in a draft tube. Heat transfer coefficients at the vessel bottom were evaluated using the TOIRT method and compared with numerical results. The lateral heat conduction in the impinged wall was analysed with the conclusion that it has relatively small impact on the measured heat transfer coefficients. Quite good agreement of experimental data and simulation results was achieved concerning the size and position of the heat transfer maximum at the vessel bottom
    corecore