16,873 research outputs found

    Corrections to the SU(3)×SU(3){\bf SU(3)\times SU(3)} Gell-Mann-Oakes-Renner relation and chiral couplings L8rL^r_8 and H2rH^r_2

    Get PDF
    Next to leading order corrections to the SU(3)×SU(3)SU(3) \times SU(3) Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is ψ5(0)=(2.8±0.3)×103GeV4\psi_5(0) = (2.8 \pm 0.3) \times 10^{-3} GeV^{4}, leading to the chiral corrections to GMOR: δK=(55±5)\delta_K = (55 \pm 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2)×SU(2)SU(2) \times SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2)×SU(2)SU(2) \times SU(2), δπ\delta_\pi, we are able to determine two low energy constants of chiral perturbation theory, i.e. L8r=(1.0±0.3)×103L^r_8 = (1.0 \pm 0.3) \times 10^{-3}, and H2r=(4.7±0.6)×103H^r_2 = - (4.7 \pm 0.6) \times 10^{-3}, both at the scale of the ρ\rho-meson mass.Comment: Revised version with minor correction

    Chiral symmetry restoration and deconfinement in QCD at finite temperature

    Full text link
    The light-quark correlator in the axial-vector channel is used, in conjunction with finite energy QCD sum rules at finite temperature, in order to (a) establish a relation between chiral-symmetry restoration and deconfinement, and (b) determine the temperature behavior of the a1(1260)a_1(1260) width and coupling. Results indicate that deconfinement takes place at a slightly lower temperature than chiral-symmetry restoration, although this difference is not significant given the accuracy of the method. The behaviour of the a1(1260)a_1(1260) parameters is consistent with quark-gluon deconfinement, as the width grows and the coupling decreases with increasing temperature

    Transport in random quantum dot superlattices

    Get PDF
    We present a novel model to calculate single-electron states in random quantum dot superlattices made of wide-gap semiconductors. The source of disorder comes from the random arrangement of the quantum dots (configurational disorder) as well as spatial inhomogeneities of their shape (morphological disorder). Both types of disorder break translational symmetry and prevent the formation of minibands, as occurs in regimented arrays of quantum dots. The model correctly describes channel mixing and broadening of allowed energy bands due to elastic scattering by disorder

    A Correlation Between Hard Gamma-ray Sources and Cosmic Voids Along the Line of Sight

    Full text link
    We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E>100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as "VHE-like" sources) are distributed along underdense lines of sight at the 2.4 sigma level. There is also a less suggestive correlation for the Fermi hard source population (1.7 sigma). A correlation between 10-500 GeV flux and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4 sigma and 2.6 sigma, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity tau(E,z) ~5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.Comment: Accepted by MNRA
    corecore