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ABSTRACT
We investigate the response of initially substructured, young, embedded star clusters to in-
stantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars
and the gas by simplistically modelling the star formation process so as to obtain a variety of
substructure distributed within our modelled star-forming regions. We show that, by measuring
the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much
mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter
how complex the background structure of the gas is, and we present a simple analytical recipe
describing this behaviour. We show that the evolution of the star cluster while still embedded in
the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect
the time-scale on which the cluster can evolve into a virialized spherical system. Embedded
star clusters that have high levels of substructure are subvirial for longer times, enabling them
to survive gas expulsion better than a virialized and spherical system. By using a more realistic
treatment for the background gas than our previous studies, we find it very difficult to destroy
the young clusters with instantaneous gas expulsion. We conclude that gas removal may not
be the main culprit for the dissolution of young star clusters.

Key words: methods: numerical – stars: formation – galaxies: star clusters: general.

1 I N T RO D U C T I O N

The vast majority of stars appear to form in groups from dozens to
thousands of members inside molecular clouds (Lada & Lada 2003;
Bressert et al. 2010; King et al. 2012). However, embedded star
clusters do not hold their natal gas for long. Even before forming
low-mass stars that reach the main sequence, proto-stars already
inject energy into the surroundings gas via proto-stellar jets, and
when a massive star forms, large amounts of energy are radiated
into the field. Finally, the first supernovae explodes and, depending
of the size of the region, could remove any remaining gas in the
cluster (see Lada & Lada 2003). Star formation is observed to be
a highly inefficient process. It is estimated that at most 30 per cent
of the gas ends up converted into stars (Dobbs et al. 2014; Padoan
et al. 2014); thus, it has been argued that the gas removal process
is highly destructive and can disperse most of the star clusters into
the field (e.g. Hills 1980; Elmegreen 1983; Verschueren & David
1989).

Several authors have examined effects of gas loss in star clusters
(see Tutukov 1978; Hills 1980; Elmegreen 1983; Mathieu 1983;

� E-mail: juan.farias@chalmers.se

Lada, Margulis & Dearborn 1984; Elmegreen & Clemens 1985;
Pinto 1987; Verschueren & David 1989; Goodwin 1997a,b; Geyer
& Burkert 2001; Boily & Kroupa 2003a,b; Bastian & Goodwin
2006; Goodwin & Bastian 2006; Baumgardt & Kroupa 2007; Par-
mentier et al. 2008; Goodwin 2009), but most of these works have
concentrated on gas loss from clusters in which the stars and gas are
both dynamically relaxed and in global virial equilibrium identify-
ing the global star formation efficiency (SFE) and the gas expulsion
rate as the parameters that decide how star clusters respond to gas
expulsion. But, star clusters form from hierarchically substructured
molecular clouds and stars are born inside that substructure (Whit-
more et al. 1999; Johnstone et al. 2000; Kirk, Johnstone & Tafalla
2007; Schmeja, Kumar & Ferreira 2008; Gutermuth et al. 2009;
di Francesco et al. 2010; Könyves et al. 2010; Maury et al. 2011;
Wright et al. 2014). Initially, substructured clusters need to relax for
at least one crossing time to reach a spherical and virial equilibrium
distribution. During this relaxation process, the global dynamical
state of a cluster can be very different from virial equilibrium (see
Smith et al. 2011) and depending of the size of the cluster, stellar
feedback can remove the gas well before the star cluster is com-
pletely relaxed.

Verschueren & David (1989) and Goodwin (2009) noted that the
exact dynamical state of clusters at the moment of gas expulsion
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is extremely important and the SFE alone cannot tell what will be
the fate of a cluster. The inclusion of primordial substructure in the
studies (Smith et al. 2011, 2013a) also show that the SFE is not
a good estimator even when the cluster match virial equilibrium
velocities, because the SFE is a global and static parameter that
does not account for the expansion and contraction of the cluster
during the relaxation phase.

Smith et al. (2011) introduced the Local Stellar Fraction (LSF)
defined as

LSF = M∗(r < Rh)

M∗(r < Rh) + Mgas(r < Rh)
, (1)

where Rh is the radius that contains half of the total mass in stars.
M∗ and Mgas are the mass of the stars and the gas, respectively,
measured within Rh. It has been shown that the LSF is a much
better indicator of cluster survival than the SFE (Smith et al. 2011).

In our previous work (Farias et al. 2015), we have quantified the
relevance of the dynamical state of initially substructured clusters,
measured by the pre-gas-expulsion virial ratio Qf, introducing a very
simple analytical model that depends only on the LSF and Qf. This
model predicts quite well the amount of stellar mass that remains
bound after gas expulsion even when gas is removed at very early
stages of the star cluster evolution. Such models were tested utilizing
initially substructured distributions of stars embedded in a static and
smooth background potential. The argument to include primordial
substructure for the distribution of the stars is the observational
evidence that star formation follows spatial distribution of the gas,
which is substructured. This substructure is moulded by the internal
supersonic turbulence in the gas, while the source and nature of
this turbulence is still a matter of debate. To complete the picture,
we give the gas in this paper the ability to evolve and interact with
the stars. We also include primordial substructure in the gas and
a consequent stellar distribution by emulating the star formation
process with an ad hoc recipe and expelling the gas instantaneously
at different embedded star cluster ages.

Before testing the analytical model of Farias et al. (2015), we
modify it in order to account for the different gas and stellar spatial
distributions, and we explain why the simplistic model fails at cer-
tain ranges of LSF. We use this model to show how the fbound–LSF
trend we have found in previous studies depends on the spacial and
dynamical configuration of the stars and the gas. We find that the
model might not be accurate for more exotic configurations that
young embedded star clusters might have. Therefore, we test this
new model in a more realistic scenario and show an alternative to
the previous estimations.

In Section 2, we describe the modified analytical approach that
we use to predict the outcome of our simulations. In Section 3, we
describe the numerical methods and assumptions used in the star
formation simulations. We show our results in Section 4, and we
discuss and present our conclusions in Section 5.

2 ANALYTICAL APPROACH

In Farias et al. (2015), we introduce a very simple model that works
fairly well in predicting the amount of bound mass that clusters can
retain after instantaneous gas expulsion. In this model, we made
several assumptions that may not hold in realistic clusters. One
important assumption was that stars and gas follow approximately
the same distribution. Thus, we expressed the potential energy on
the cluster before gas expulsion as

�∗,1 ∼ −M∗
GMtot

Rh
, (2)

where Mtot is the total mass in stars and gas in the cluster. This
assumption could be particularly important in substructured em-
bedded star clusters. Even though we expect that stars and gas
follow a similar distribution initially, stars decouple very fast from
the gas and form their own hierarchy. This happens because stars
and gas respond to very different physical mechanisms (Girichidis
et al. 2012). In this section, we reconstruct the Farias et al. (2015)
analytical model in a more general way and provide an alternative
method to estimate the bound fraction based only on the properties
of the stellar distribution.

2.1 Estimating the final bound fractions

We consider an arbitrary distribution of stars embedded in an arbi-
trary gas distribution. The gas and star distributions are not neces-
sarily spherical or, indeed, similar to each other at the exact moment
when instantaneous gas expulsion begins. We assume that the stel-
lar distribution follows a Maxwell–Boltzmann velocity distribution.
We will denote quantities just before gas expulsion with subscript
1 and just after gas expulsion with subscript 2. Considering the
different spatial distributions, the potential energy of the stars just
before gas expulsion is given by

�∗,1 = −A
GM2

∗
Rh

− B
GM∗Mgas

Rh
, (3)

where we use the same scaleradius in both contributions. In this
work, we choose Rh to be the half-mass radius of the stellar cluster.
A and B are structural parameters that depend on the distributions
of the stars and the gas, as well as the chosen scaleradius Rh. A
depends only on the stellar component while B is more complicated,
depending on how the stellar component is distributed with respect
to the gas distribution.

Thus, the parameters A and B are basically a measure of the struc-
ture of each potential and tell us about the geometrical distribution
of the star clusters. They are given as

A = −�∗,∗
Rh

M2∗
(4)

and

B = −�∗,gas
Rh

M∗Mgas
, (5)

where �∗, ∗ and �∗, gas are the potential energy of the stars due to
themselves and due to the gas, respectively. In our simulations, we
can estimate A and B numerically at any given time, because we have
full access to the spatial three dimensional (3D) distributions of gas
and stars. However, given the complicated substructure of the gas in
particular, it would be impossible to estimate these parameters for an
observed young star cluster. The reason is that, observationally, we
have only the 2D-projections of the densities of stars and gas along
our line of sight, even in the best case scenario (i.e. no absorption
or saturation).

We can use the LSF to estimate the total mass in the region where
the stars are present, i.e. Mtot = Mgas + M∗ ∼ M∗/LSF. From here,
we can obtain the amount of gas in this region as

Mgas ≈ 1 − LSF

LSF
M∗. (6)

After gas expulsion, the potential energy of the cluster de-
pends only on the stellar distribution. Considering instantaneous
gas expulsion, stars have no time to change either their veloci-
ties or their positions. Thus, the kinetic energy remains equal, i.e.
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T∗ = T∗, 1 = T∗, 2 and the structure parameter A remains the same
as well. Thus, the potential energy after gas expulsion is

�∗,2 = −A
GM2

∗
Rh

. (7)

We can rewrite equation (3) as

�∗,1 = �∗,2

A

[
A + (1 − LSF)

LSF
B

]
(8)

= η�∗,2, (9)

where we define

η(LSF, A, B) = 1 + (1 − LSF)

LSF

B

A
. (10)

The escape velocity after gas expulsion can be expressed by

vesc =
√

−2
�∗,2

M∗
. (11)

Using the definition of the virial ratio and equation (9),

Qf = T∗
−�∗,1

(12)

= T∗
−η�∗,2

, (13)

and assuming that the stars follow a Maxwellian velocity distribu-
tion, the total kinetic energy of the stars can be written as

T∗ = 3κ

2
M∗σ 2

∗ , (14)

where κ = π/(3π − 8). Thus, we can rewrite equation (11) as

vesc =
√

2T∗
ηQfM∗

(15)

=
√

3κ

ηQf
σ∗. (16)

A reasonably first guess for the bound fraction would be the
fraction of stars with velocities below the escape velocity. In a
Maxwellian velocity distribution, this fraction comes from the cu-
mulative density distribution evaluated in v = vesc. With respect to
σ ∗, this function is

F (< X) = erf

(
1√
2
X

)
−

√
2

π
X exp

(
−X2

2

)
, (17)

where X = v/
√

κσ∗. Evaluating in vesc and using equation (16), we
obtain

fbound = erf

(√
3

2ηQf

)
−

√
6

πηQf
exp

(
− 3

2ηQf

)
. (18)

Note that for B/A = 1, η = 1/LSF, and equation (18) is then
equivalent to the Farias et al. (2015) model.

2.2 An alternative approach

Using the same model, it is possible to avoid measurements of the
η function as described before. Considering the virial ratio of the
cluster right after gas expulsion

Qa = − T∗
�∗,2

, (19)

and using equation (13), we obtain that

η = Qa

Qf
. (20)

Therefore, equation (18) becomes

fbound = erf

(√
3

2Qa

)
−

√
6

πQa
exp

(
− 3

2Qa

)
. (21)

We emphasize that Qa is the virial ratio of the cluster after gas
expulsion. As we are dealing with instantaneous gas expulsion,
it is also the dynamical state of the cluster right before the gas is
expelled, ignoring completely the presence of the gas. We will show
in Section 4 how well this simplified measure fares in predicting
the results of our simulations.

In this approach, only one parameter is necessary to estimate
fbound. It is still challenging to measure such a value, where the
most problematic issue is to estimate �∗, 2. However, this result
highlights that the specific geometry of the gas and the stars is not
really important. What is important is the dynamical state of the
cluster if we suddenly remove the gas. In general, a system with
Q > 1 is said to be unbound. According to equation (21), a fbound

fraction of the cluster is still bound and the cluster will not be
completely dissolved, for example, for a cluster with Qa = 1, we
estimate that a 60 per cent of the stars will stay bound.

3 I N I T I A L C O N D I T I O N S A N D N U M E R I C A L
M E T H O D S

In Farias et al. (2015), we evolved fractal distributions of stars
embedded in a static, smooth background potential to mimic the
gas, which we assume follows a Plummer density profile. Here, we
advance the picture of hierarchical star cluster formation further by
introducing a dynamically live and primordially substructured gas
background. With this addition to our models, we have to change
the numerical integrator used in Farias et al. (2015), since it is not
designed to include an hydrodynamical system like the gas.

Before advancing that further, we first wish to test if the inclusion
of a live gas background, and also the use of a different code, might
affect the results found in Farias et al. (2015). In particular, we test
if there is any change in the fbound–LSF trend in the case of Qf = 0.5
for a smooth Plummer background gas.

We then proceed by setting up two different numerical experi-
ments described in Section 3.1.

First, as a control test, we set up the same systems as previously
studied in Farias et al. (2015), with the only difference that gas is
now able to evolve.

In the second experiment, we create substructured initial con-
ditions by evolving a turbulent uniform sphere of gas in a star-
formation-like fashion in order to generate stellar and gas substruc-
ture throughout the model star-forming region. Our approach was
to evolve the initially uniform ad turbulent sphere of gas, while
applying our own ad hoc star formation prescription. We do not
use sink particles as we do not want to include the effects of star
particles with varying masses at this stage. Indeed, the effects of
the inclusion of an initial mass function are being prepared in par-
allel to this work by Domı́nguez et al. (in preparation). We are not
concerned with implementing star formation in the most accurate
way possible, as such simulations are inevitably very expensive
computationally, and could potentially exhaust all of our resources
in just a single simulation. The reader should be aware that these
are not formal star formation simulations since we cannot follow
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fragmentation correctly, neither use stellar accretion models (see
Section 3.3.5). However, the end result of evolving the initially
uniform and turbulent spheres of gas, while applying our numer-
ically cheap star formation prescription, is that we can generate
large numbers of substructured clusters, in which the stars roughly
follow the substructure of the gas in a manner that broadly mimics
the substructure in real star-forming regions. These substructured
conditions are then used as initial conditions for our gas expulsion
tests, and we have sufficiently large samples of such initial condi-
tions that our results are statistically valid, and not dominated by
cluster-to-cluster variations.

In our experiments, gas is always expelled instantaneously. As
such, the resulting bound fractions can be interpreted as the lower
limits of cluster survival, since instantaneous gas expulsion is the
most destructive mode of gas loss (see e.g. Baumgardt & Kroupa
2007; Smith et al. 2013a).

In Section 3.1, we explain the numerical setup that we use in
both experiments with a live gas background. The details of the
smooth background gas simulations are described in Section 3.2.
The initial conditions and details of the substructured simulations,
as well as the ad hoc star formation recipe we use, are explained in
Section 3.3.

3.1 Modeling stars embedded in a live gas

We perform simulations utilizing the AMUSE (Astrophysical Multi-
purpose Software Environment; McMillan et al. 2012; Pelupessy
et al. 2013; Portegies Zwart et al. 2013). AMUSE is a high level inter-
face developed in PYTHON, allowing the user to couple different sys-
tems evolving in different physical domains and scales. In our case,
those domains are Purely gravitational (stars) and a self-gravitating
hydrodynamical fluid (gas).

The equations of motion for the stars are solved by using the
AMUSE PH4 dynamical module (McMillan et al. 2012), which is an
MPI-parallel fourth-order Hermite integrator (see e.g. Makino &
Aarseth 1992) with block time-step scheme. The gas is modelled
with the Springel & Hernquist (2002) conservative smoothed parti-
cle hydrodynamics (SPH) scheme implemented by the code FI (Pelu-
pessy, van der Werf & Icke 2004; Pelupessy 2005, see also Hernquist
& Katz 1989; Gerritsen & Icke 1997), which uses the Monaghan
& Lattanzio (1985) kernel and computes the self-gravity of the gas
using the Barnes & Hut (1986) tree scheme. We have adopted vis-
cosity terms α = 0.5 and β = 1 (half the commonly adopted values)
since we expect only relatively weak shocks caused mainly by grav-
itational collapse. However, we have tested sensitivity of our results
to this choice and find it is of negligible importance, perhaps due to
the lack of strong shocks that develop during our modelling. In our
simulations, gas and stars interact only by gravity, we do not include
feedback. Thus, we couple both systems using the BRIDGE scheme
(Fujii et al. 2007) that manages the perturbation of one system on
to the other by gravitational velocity kicks in a Leapfrog time-step
scheme (see also Pelupessy & Portegies Zwart 2012, for a similar
setup). Interactions between stars and gas are done symmetrically,
i.e. utilizing the same method to calculate the gravity of the systems
in both directions (stars perturbed by the gas and gas perturbed by
the stars). For this, we choose to use the Barnes & Hut (1986) tree
scheme. Such a configuration has proven to be most accurate, with
an energy error below 1 per cent at all times.

3.2 A smooth live gas background

Our first step in advancing the complexity of our simulations of
young embedded star clusters is to change the static background

Plummer potential previously used in Farias et al. (2015) for a live
Plummer sphere of gas that is affected by the gravity of the stars.

We take a set of 20 fractal distributions with fractal dimension
of D = 1.6 (see Goodwin & Whitworth 2004) and N = 1000 equal
mass stars with Mi = 0.5 M� in a radius of 1.5 pc. These stellar
distributions are embedded in a Plummer sphere of gas of Rpl = 1 pc
and Mpl = 3472 M�, ensuring a global SFE = 0.2 inside the radius
of the stellar distribution.

We use an adiabatic equation of state (EOS) with adiabatic index
of γ = 5/3 with no cooling or heating recipes. The internal energy
of the gas is scaled to account for the extra mass (the stars) inside
the sphere, so that initially the gas is in equilibrium and subsequent
perturbations are only caused by the relaxation of the stars. The
stellar velocities are scaled in order to obtain initial virial ratios
of Qi = 0.0 and 0.5. The gas is modelled with Ngas = 100k SPH
particles and a neighbour number Nnb = 64, which is enough to
prevent unphysical scattering and to reproduce the structure of the
Plummer sphere (see Appendix A and also Hubber et al. 2011,
2013).

The gas is expelled instantaneously at a specific point in the
evolution of the clusters, namely when the virial ratio increases to
Qf = 0.5 again after the second full oscillation around Qf = 0.5
since the start of the simulation, i.e. at the next passing of Qf = 0.5
after the green dashed line in fig. 1 in Farias et al. (2015).

3.3 Creating substructured embedded star clusters

In order to create initially substructured stellar and gaseous dis-
tributions, we evolve a turbulent sphere of gas with an isothermal
EOS at T = 10 K, a radius of Rcl = 1.5 pc, and a total mass of
Mgas,0 = 2500 M�. The gas is modelled utilizing Ngas = 250 k SPH
particles and Nnb = 50.1 The cloud is initially perturbed utilizing
a turbulent velocity field with energy injection mainly on the large
scales (see Section 3.3.1). We do not continuously drive turbulence
in any of these simulations, beyond the initial conditions. We evolve
the cloud with an ad hoc star formation recipe (described in Sec-
tion 3.3.2) forming equal mass particles of 0.5 M� until we match
an SFE of 0.2, i.e. 1000 stars. As a result, we obtain a filamentary
cloud of gas and a consequent stellar distribution that we use as
initial condition for further evolution. For convenience, we choose
t = 0 as soon as the desired 1000 stars has formed, although the time
to reach this stage does vary between realizations. At this time, we
switch the global EOS of the gas from isothermal to adiabatic (with
adiabatic index γ = 5/3) and follow the evolution of the embedded
star cluster. We expel the gas instantaneously at t = 0, 1, and 2 Myr
and follow the gas free cluster until t = 15 Myr.

The different stages of star cluster process needs special con-
siderations and methods, then for the numerical treatment of the
embedded star cluster, we split the simulation into four stages:

(i) Collapse phase: Evolution from an initially spherical, uniform,
turbulent gas cloud until the star formation criteria is first met.

(ii) Star formation phase: Continues until the desired SFE is met.
(iii) Embedded phase (t ≡ 0): Starts when we switch the global

EOS to adiabatic and continues until we decide to expel the gas.
(iv) Gas free phase: The stage after gas expulsion where only the

stars in the cluster evolve until t = 15 Myr to make sure all escapers
are far from the main cluster.

1 We have decreased Nnb from 64, when using a Plummer sphere, to 50 in
this set up in order to force a resolution of 0.5 M�, which is the mass of the
stars we are attempting to form, without compromising performance.
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Table 1. Summary of the constraints used in this work to model young star clusters from their parent
turbulent molecular cloud to the final gas free star cluster remnant. First column shows the physical
stage modelled by the method, second column shows comments about the constraints related to the stellar
component of the cluster, third row shows whether the Bridge integrator is enabled for the mutual interaction
between gas and stars, and fourth column shows comments about constraints and initial conditions related
to the gaseous components, such as the EOS used in the corresponding phase and the velocity field used
as initial condition.

Stars BRIDGE Gas

Collapse phase – Off EOS: Isothermal
Initial velocity field:

P(k) ∝ k−4

Star formation phase 1 star = Nsmoothbound
SPH particles

On EOS: Isothermal

If hi < hcrit then:
check for star formation

criterion
Embedded phase 1000 equal mass stars On EOS: Isothermal

mstar,i = 0.5 M� Self-gravity : Off
EOS: Adiabatic, γ = 5/3

Self-gravity: On
Gas free phase Evolution continues for 15 Off –

Myr

We emphasize that the collapse phase and star formation phase
can be considered an approach to generate a substructured distri-
bution of stars and gas, that is then used as initial conditions for
our numerical experiment, during the embedded and gas free phase.
We summarize the numerical treatment of each stage in Table 1
and explain them in detail in the following subsections. A summary
table of the different sets of star formation simulations is provided
in Table 2.

3.3.1 Collapse phase

We start the simulation with an uniform sphere of gas modelled us-
ing an isothermal EOS to emulate the cooling of molecular clouds
in a simple and cheap way. Such an approximation has been widely
used in star formation simulations (Klessen, Burkert & Bate 1998;
Klessen & Burkert 2000; Heitsch, Mac Low & Klessen 2001;
Li, Klessen & Mac Low 2003) to avoid the inclusion of radia-
tive cooling recipes that are computationally expensive. Further-
more, the isothermal regime breaks down at very high densities (�
1.5 × 10−14 g cm−3, see Mac Low & Klessen 2004), which are not
being reached in this work (see below). We set up the initial velocity
of the SPH particles by creating an artificial turbulent velocity field
in Fourier space with an energy power spectrum of P(k) ∝ k−α ,
with k = |
k| as the 3D wavenumber. To recreate the macroscopic
structure observed in star-forming regions, we choose a power law
of α = 4, so that energy perturbations are distributed mainly on the
large scales. We populate the k spectrum with integer wavenumbers
from k = 1 − 128. Then the Fourier space velocity perturbations are
transformed to 3D real space using the inverse Fourier transform.
This results in a 3D grid of Ngrid = 1283 cells as the velocity field.
Then the velocities of each SPH particle are linearly interpolated
from the grid. The velocity of the SPH particles is only set up as
initial condition and no additional energy injection is provided later,
i.e. we do not use driven turbulence.

The resulting turbulent velocity field is a combination of two ex-
treme fields: the compressive forcing (curl-free) and the solenoidal
forcing (divergence-free). On average, a random field contains two-

thirds in the solenoidal modes and one-third in the compressive
modes (see Federrath, Klessen & Schmidt 2009, for details). Dif-
ferent amounts of energies in the different modes have strong con-
sequences in the characteristics of the final distribution of the gas,
and therefore they may affect the final stellar distribution obtained.

To check how much the final stellar distribution is affected by the
different modes of turbulence, we set up the initial velocity fields
in three ways: pure compressive modes (curl-free), pure solenoidal
modes (divergence-free), and random (mixed).

3.3.2 Star formation phase

In order to avoid strong dynamical encounters – we want to isolate
effects of gas expulsion – only equal mass particles are formed. This
is not possible to achieve with the use of standard recipes, e.g. mass
accretion by sink particles, because sinks can be ejected from the
gas-rich regions of the cluster before obtaining the desired mass.
Therefore, we use an ad hoc star formation recipe forming stars
instantly skipping the accretion phase.

A gas particle i and its Nnb − 1 nearest neighbours are combined
into a single star particle if: (1) the smoothing length hi < hcrit,
and (2) the Nnb gas particles (including i) are gravitationally bound.
The position and velocity of the new star correspond to the position
and velocity of the centre of mass of the combined gas particles. If
two gas particles that fulfil these conditions are on each other’s Nnb

list, they are combined into the same star particle. The density of
gas particles is updated just after the new star forms to account for
the empty space left behind by the combined gas particles, i.e. the
density in the region decreases.

We used hcrit = 0.0018 pc, roughly corresponding to a density
threshold of ρcrit = 1.34 × 10−15 g cm−3. The Jeans mass at that
density is 0.007 M� but to properly resolve fragmentation we need
1.5Nnb per Jeans mass i.e. the minimum Jeans mass we are able
to properly resolve is 0.75 M� (Bate, Bonnell & Bromm 2002).
This is below our resolution limit, and fragmentation occurring in
our models does therefore not depict the actual physical process
of fragmentation correctly (see Section 3.3.5). Anyhow, the SPH
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scheme has been shown to be stable enough to not produce artificial
fragmentation even if resolution is very low (Hubber, Goodwin &
Whitworth 2006). We choose hcrit to be as small as possible without
slowing down the simulations considerably.

When at least two stars have formed, we initiate the BRIDGE

scheme2 as described in Section 3.1.
This phase ends when we match the desired SFE of 20 per cent,

i.e. when 1000 equal mass particles have formed. This allows a
direct comparison with our previous studies in which the same
number of stars are simulated.

3.3.3 Embedded phase

The duration of the ‘Collapse’ and ‘Star formation’ phases is dif-
ferent for each cloud. We therefore take the resulting distributions
as initial conditions, and we define the time when the star forma-
tion phase ends as t = 0. We expel the gas in some simulations at
this time and so, for these objects, the embedded phase is skipped.
For the simulations where we choose to expel the gas later, it is
not possible to continue with the same treatment for the gas with-
out forming more stars, since the isothermal EOS does not provide
pressure support for the cloud. Therefore, we need to stop the col-
lapse. A more realistic way would be to include heating recipes
in the simulations. However, those recipes are numerically expen-
sive. We therefore choose two extreme ways to artificially stop the
gas collapse, and the further formation of stars. The first way is
to change the EOS from isothermal to adiabatic with an adiabatic
index of γ = 5/3. In this way, since there is no cooling, thermal
pressure stops the collapse. The second way is to simply turn off
the self-gravity of the gas, leaving the interactions between the stars
and gas intact. Both ways are, in principle, unphysical. However, it
is not clear how the gas should realistically behave during this phase
since, in real star-forming regions, there are many complex physi-
cal processes involved, e.g. stellar feedback, stellar winds, magnetic
fields among others, which we try to avoid to include in our sim-
ulations. Due to these dissipative processes, it is very unlikely that
the gas forms further dense clumps inside the stellar cluster, instead
it will disperse. In the case of the adiabatic EOS, we see that the
gas stays clumpy, and the largest contribution to the potential of
the cluster comes from the gas, i.e. this treatment mimics one ex-
treme. By turning the self-gravity of the gas off, the gas disperses
and would eventually leave the cluster. However, since the velocity
gained in the collapse phase is not enough for the gas to leave the
cluster in the maximum time of 2 Myr that we choose to evolve
the embedded phase, this treatment leads to the opposite extreme
– a maximum dispersal of the gas, without leaving the region of
interest.

In both cases, we expel the gas at 1 and 2 Myr after star formation
has stopped. Hereafter, we will refer to simulations with an adiabatic
EOS for the gas as adabetic AEOS simulations, and simulations with
the self-gravity of the gas turned off as SGO simulations.

3.3.4 Gas free phase

After gas expulsion, the gas is not present anymore and we follow
only the evolution of the stars using the code PH4 alone. We follow

2 This is due only to a technical problem. A code like PH4 cannot calculate
forces for only one particle. Before starting the BRIDGE scheme, forces for
the only present star are evaluated by the hybrid code FI in a tree scheme
until another star is created

Table 2. Summary table of the sets of star formation simu-
lations performed in this work. For each set, we performed
10 simulations with different random seeds. Column 1 shows
the name of the set that is related to the numerical treatment
of the gas during the embedded phase, i.e. NEP stands for
no embedded phase, AEOS for adiabatic equation of state,
and SGO for self gravity off. Column 2 shows the nature of
the initial velocity field for the gas, and column 3 is the gas
expulsion time measured after the 1000 stars form, i.e. from
the beginning of the embedded phase.

Set Velocity field texp (Myr)

NEP_c compressive 0
NEP_m mixed 0
NEP_s solenoidal 0
AEOS1_c compressive 1
AEOS1_m mixed 1
AEOS1_s solenoidal 1
AEOS2_c compressive 2
AEOS2_m mixed 2
AEOS2_s solenoidal 2
SGO1_c compressive 1
SGO1_m mixed 1
SGO1_s solenoidal 1
SGO2_c compressive 2
SGO2_m mixed 2
SGO2_s solenoidal 2

the evolution of the stars for 15 Myr after gas expulsion. At this
point, we measure the bound mass fraction of the biggest clump
formed in the simulation, using a method based on the iterative
measure of the mean velocity of the bound mass. We call this
method the ‘Snowballing Method’ (see Smith et al. 2013b, for a
brief description, a full description of the method will be published
in Farias et al., in preparation).

We perform 10 realizations for each different numerical treatment
of the gas in the embedded phase (i.e. either with an adiabatic EOS
or when turning the self-gravity of the gas off), 10 for each initial
turbulent velocity field, and 10 for each gas expulsion time texp at 0,
1, and 2 Myr after the embedded phase begins. Table 2 summarizes
each of the sets for which 10 simulations were made with a different
random seed, which sums up to a total of 150 simulations.

We run the simulations using 40–50 cores for the hydrodynamical
integrator FI and 10 cores for the N-body module PH4. The most
expensive simulations (i.e. the ones where the embedded phase is
evolved for 2 Myr) take between 2 to 3 h each to complete.

3.3.5 On the simplicity of the star formation recipe

In this study, we use a very rough and simplistic star formation
recipe. We emphasize that we want to obtain an arbitrary sub-
structured cluster on which we will test how stars respond to gas
expulsion. Even though we would like to reproduce star formation
properly, we are limited by the computational power available to
us. A ‘realistic’ sophisticated star formation recipe would exhaust
it in a couple of simulations. In this study, statistics is crucial, since
much can change from one hierarchical distribution to another, and
thus we sacrifice accuracy in the star formation recipe to obtain
a large sample of simulations. Some simplifications were made to
avoid the inclusion of additional physics, like the absence of stellar
feedback, stellar evolution, and the production of only equal mass
particles. The effects of this last one is being studied in a parallel
work.
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We note that using the described prescription we obtain the de-
sired SFE in about ∼1.2 tff, where the initial free-fall time is tff ≈
0.6 Myr. This is a time-scale comparable to more sophisticated star
formation recipes (see e.g. Bate 2009), where they obtain an SFE of
∼38 per cent in about 1.5 tff in their biggest simulation. However,
this time-scale may be influenced by the nature of the initial con-
ditions in the gas, like the properties of the initial velocity field. A
more quantitative time-scale for comparison with sophisticated star
formation recipes would be the star formation rate per free-fall time
SFRff, which is defined as

SFRff = Ṁ∗tff/Mgas,i (22)

(Krumholz & Tan 2007). We have found that the mean SFRff in
our simulations is ∼0.33, where we have used the initial free-fall
time and the mean Ṁ∗ of our simulations in the estimation. This
value is almost the same as in Price & Bate (2009) for simulations
without magnetic fields and no radiative feedback. This means that
our simulations do not have effects caused by a too fast (or slow)
star formation phase. These time-scales were achieved by using a
density threshold beyond our resolution limit. If we would choose
the threshold according to our resolution limit, then star formation
would happen too fast (since simulations reach these densities ear-
lier), before the cloud forms the filamentary structure observed in
star-forming regions. We obtain the desired structures at the cost of
letting the simulation go beyond the recommended accuracy. This
means that we can simulate large-scale structure (in the gas and
stars) confidently, but not in the small scales (systems less massive
than 0.75 M�). The potential consequence is that we do not resolve
the formation of primordial binaries or multiple systems properly.
However, effects of binaries are important only when including an
IMF, whose effects will be considered in a future study. Another
consequence is that gas fractions inside small sub clusters may not
be correctly modelled with uncertainties stemming from the com-
bination of resolution of the gas and the absence of accretion in the
recipe. However, the correct fraction of gas that subclusters should
have is unclear, as is how exactly stars and gas are coupled in the
star cluster formation process.

We emphasize once again, that we do not seek to achieve a com-
pletely correct star formation simulation, our goal is to test the
response of embedded star distributions to instantaneous gas expul-
sion, when gas and stars are both in substructured distributions, in
contrast with our previous studies where this has been tested assum-
ing a spherical distribution for the gas. By changing the treatment
of the gas after all stars have form (the embedded phase), we create
different possible scenarios in which we can remove the gas and
measure the outcome.

4 RESULTS

4.1 A smooth gas background

By using a smooth Plummer sphere of gas and expelling the gas
when the systems have exactly Qf = 0.5, we obtain the same trend
as in (Farias et al. 2015; see Fig. 1). The main difference in both
cases is a slight offset in the region of LSF that clusters populate.
This is because if interactions between stars and gas are possible,
stars loose energy in the interaction and sink to the centre, raising
the LSF. However, the change is not significant and the fbound–LSF
trend is the same as in Farias et al. (2015).

Even though the trend is the same, it is quite obvious that the
simple model of Farias et al. (2015) overestimates fbound at low
values of LSF (∼0.2) and the sample of live gas simulations appears
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Figure 1. The fbound–LSF trend for fractal clusters embedded in a Plum-
mer sphere of gas. Grey symbols are simulations with a static background
potential (Farias et al. 2015) and blue symbols are simulations using a live
gas background. In the simulations shown in this plot gas is expelled at the
same dynamical time, i.e. when Q = 0.5 and Q is rising for the second time
in the cluster evolution. Black line represents the Farias et al. (2015) model,
i.e. equation (18), assuming B/A = 1 (or η = 1/LSF).

to survive better than the model expects for LSF > 0.4. We found two
main reasons that give the fbound–LSF relation its particular shape.
The first one is related to the basic assumptions in the model of Farias
et al. (2015). To simplify the maths, it was assumed that the stars and
gas are distributed in a similar way (B/A ≈ 1). We make use of the
structural parameters A and B to show how far simulations are from
this assumption and also how much this affects the estimations. We
note that we are not suggesting to measure such values in observable
star clusters, and this is just an illustrative experiment. While the
A parameter is relatively similar for all simulations (top left-hand
panel in Fig. 2), the B parameter is highly dependent of how the stars
are distributed inside the background gas (bottom left-hand panel in
Fig. 2). We show the structural parameters as a function of the LSF.
A is similar for all the simulations since at that point the level of
substructure and shape of the clusters are similar, however B shows
a strong dependency of the LSF. The reason is that at high LSFs,
stars are concentrated in the centre and most of the gas is in the
outer layers of the cluster (then B is low). On the other hand, at low
LSF, the cluster is expanded and there is more gas inside the cluster
(B raises). Therefore, the ratio B/A is highly dependent on the LSF
(top middle panel), and thus equations 10 and 18 imply that clusters
survive better when B/A < 1 and the opposite when B/A > 1.
We show a fit to this ratio (green dashed line in Fig. 2) and we
show how this effect affects the model of Farias et al. (2015) in the
right-hand panel of Fig. 2 as the green dashed line. We see that this
variation clearly explains the shape of the fbound–LSF trend at high
LSF and also at low LSF. However, the effect of the LSF-dependent
B/A-ratio is not strong enough to explain why star clusters do not
survive with LSFs below 0.2, as predicted by the Farias et al. (2015)
analytical model.

The second reason of the particular shape of the trend is our
ability to measure Qf. The virial ratio is highly dependent on the
frame of reference. While the potential energy is not, the kinetic
energy in the cluster is highly dependent of what we choose as the
mean velocity of stars in the cluster. The simplest way is to use
the mean velocity of the whole star distribution, and this generally
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Figure 2. Left-hand panel: the structural parameters A, B, and the ratio B/A for simulations using a smooth live Plummer sphere as background. While A is
similar for simulations, B is highly dependent on the LSF where stars with low LSF are concentrated in the centre and stars are not affected by the gas since
most of it is outside the cluster. This dependency is reflected in the B/A ratio and finally in the bound fraction of the cluster. We also show that the effective
Qf is another source of error in the fbound–LSF trend. To quantify the effect we show two fits to these parameters in a dashed green line for B/A and a dotted
blue line for the effective Qf. Right-hand panel: We apply the previous fits showing that the particular shape of the fbound–LSF described in previous papers is a
consequence of a combination of the particular geometry of the systems evolved and also our ability to measure Qf correctly and is not necessarily a universal
trend.

works fine if we are in the ballpark of high LSF values. However,
a more correct characteristic velocity for the cluster would be the
mean velocity of only the stars that will actually remain bound. Of
course we cannot know this last velocity since we would need to
know exactly what particles will remain bound a priori. But we know
that, in general, when a high fraction (or at least representative) of
the stars remain bound after gas expulsion, the mean velocity of
the whole distribution is close enough to the velocity of the bound
cluster, and the calculated Qf is then representative. However, when
fbound is low, there is a lower chance that both velocities coincide.
We call the virial ratio measured with the velocity of the stars that
finally will remain bound the effective virial ratio. In reality, it is not
possible to measure such value, but in our simulations we have all
the information that we need to track the bound particles back and
measure their mean velocity. The bottom middle panel on Fig. 2
shows the effective Qf as a function of the LSF. At low LSFs, the
velocity of the system is not representative of the one of the bound
stars. While globally the star distributions have Qf = 0.5 by design
(see our criteria for the gas expulsion time), effectively the bound
system has Qf > 0.5, resulting in an over prediction of fbound. In
order to illustrate how much the model of Farias et al. (2015) is
affected by these effects, we calculate the relation between LSF and
fbound with the fits shown in the middle panels of Fig. 2 as inputs.

Both effects are important in different regimes, and the particular
shape of the fbound–LSF trend is a combination of both. But more
importantly, this simple fitting shows that the shape of the fbound–
LSF trend is not general and depends on how the stars and gas are
distributed with respect to each other. Predicting the bound fractions
seems to be quite a difficult task, especially if gas and stars remain
substructured and have not had time to become a more spherical
distributions, and also if the bound entity is small.

We will return to the topic of predicting the survivability of
star clusters to instantaneous gas expulsion further down in the
text. Here, we want to stress that our simulations are designed to
fully explore the parameter space in LSF and Qf to be able to

compare the analytical predictions to the complete trend obtained
by our simulations. At this point, we are not concerned if the full
parameter space extends beyond that inhabited by real star clusters,
but we raise this issue again in the Discussion section.

4.2 Highly substructured gas distributions

As we describe in Section 3.3, we expel the gas of new born star
clusters at three different times: just after stars form (0 Myr) or
after 1 or 2 Myr of embedded evolution. We follow the embed-
ded evolution utilizing two very different treatments for the gas in
order to avoid further collapse. Both approaches are likely unreal-
istic. However, they represent two extremes in the possible spatial
distributions of the gas, which could have great relevance for the
evolution of the stars after gas expulsion, since the gravitational
potential fields that they produce are extremely different. We will
avoid the discussion of which scenario is closer to reality for now.
We emphasize the objective of the simulations presented in this
work is rather illustrative, to show the effects of large variations
in the background substructure, rather than to attempt to match the
background substructure found in real star clusters.

4.2.1 The new initial conditions

The nature of the initial velocity field has a strong consequence
in the substructure formed by the gas. While compressive motions
tend to form large voids and filaments, solenoidal velocity fields
tend to form a more uniform substructure (see e.g. Federrath et al.
2009). Hence, we split our simulations in three groups depending
of the initial velocity field: the compressive (curl free), solenoidal
(divergence free), and mixed velocity fields. Fig. 3 shows snapshots
at different times of the three kinds of simulations until the end of
the star formation phase.

We attempt to form systems similar to the ones in our first exper-
iment with a Plummer Sphere of gas. Table 3 shows a summary of
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Figure 3. Evolution of the initially homogeneous turbulent molecular clouds until N = 1000 equal mass stars are formed. Simulations with curl-free (left-hand
column), divergence-free (middle column), and mixed (right-hand column) turbulent fields are shown at (from the top to bottom panels) 0 , 0.36 , and 0.56 Myr
and when 1000 stars are formed using the same random seed. Each panel has 3 × 3 pc2, and the colour bar represents the logarithmic column density measured
in M� pc−2. This figure, as well as the others column density figures in this work, have been prepared with the SPLASH tool developed by Price (2011).
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Table 3. A comparison between the initial conditions generated by the turbulent setup and simulations with fractal distributions embedded in a Plummer
background. Values are means with respective standard deviations for each set of simulations described in column 1. Column 2 shows the initial half-mass
radius of the stellar distribution in parsecs, column 3 shows the initial LSF, column 4 shows the radius containing all the stars in parsecs, column 5 shows
the SFE measured at Rmax, column 6 shows the amount of primordial substructure measured by the C parameter, column 7 shows the initial virial ratio, and
column 8 shows the velocity dispersion of the stellar component.

Rh(pc) LSF Rmax(pc) SFERmax C Qi σ ∗(km s−1)

Plummer background
Cold 0.9 ± 0.1 0.19 ± 0.03 1.5 0.2 0.39 ± 0.06 0.0 0
Warm 0.9 ± 0.1 0.19 ± 0.03 1.5 0.2 0.39 ± 0.06 0.5 1.0 ± 0.1

Turbulent setup
Divergence free 0.5 ± 0.3 0.6 ± 0.2 2.5 ± 0.9 0.24 ± 0.03 0.28 ± 0.07 0.31 ± 0.06 1.1 ± 0.2
Mixed 0.4 ± 0.3 0.6 ± 0.2 2.7 ± 0.9 0.23 ± 0.02 0.27 ± 0.08 0.31 ± 0.07 1.1 ± 0.2
Curl Free 0.6 ± 0.4 0.5 ± 0.2 2.5 ± 0.9 0.23 ± 0.03 0.24 ± 0.08 0.27 ± 0.06 0.9 ± 0.2

some important parameters that we compare with the initial condi-
tions of simulations using a smooth background gas.

To measure the level of substructure, we make use of the C
parameter3 introduced by Cartwright & Whitworth (2004), which
is the ratio between the area normalized mean length of a minimum
spanning tree joining all the particles (m̄) and the area normalized
mean separation between particles. Values of C < 0.8 are obtained
in fractal-like stellar distribution (where a lower C is obtained with
smaller fractal dimensions, i.e. high level of substructure) and C >

0.8 is obtained in spherical distributions where a higher value of C
matches a steeper density profile.

Even though there is a big difference between the substructure of
the gas generated by either a curl-free or divergence-free velocity
field, this is not expressed in the resulting stellar distributions where
the resulting level of substructure is very similar in all cases. This is
because stars and gas quickly decouple, and stars tend to form their
own independent distribution through mergers of sub-groups. This
similarity is in agreement with Lomax, Whitworth & Hubber (2015)
and Girichidis et al. (2012), where the same turbulent modes were
tested. We obtain the same slight difference in the mean values of C
as Girichidis et al. (2012), with

〈Ccomp

〉
� 〈Cmix〉 � 〈Csol〉. However,

the differences are very small and well within the standard errors.
We obtain even more substructured star clusters than the Df = 1.6

fractals used in our previous studies, with C ∼ 0.26, comparable to
fractal distributions with Df < 1.5.

In comparison with the initial conditions used in our pre-
vious studies, we now form clusters with 2.5 pc radius and
SFE ∼ 24 per cent. This is slightly higher than the setup SFE of
20 per cent, since there is always some gas outside the maximum
radius of the cluster Rmax. Distributions using the turbulent setup
form with a higher LSF. This is a consequence of the shape of the
gas, which is distributed in filaments around the cluster rather than
concentrated in the centre of the stellar distribution. Furthermore,
we obtain smaller half-mass radii meaning that, in general, our stel-
lar distributions are more centrally concentrated in comparison with
the fractal method described by Cartwright & Whitworth (2004).

4.2.2 Embedded evolution

The embedded evolution strongly depends on the numerical treat-
ment of the gas, or more accurately, on the behaviour of the gas.

3 The parameter is called Q parameter by the authors, however we call it C
to avoid confusion with the virial ratio Q.

It is important to know how the star clusters behave under differ-
ent background gas conditions since this determines their matter
distribution and dynamical state at the time of gas expulsion.

Fig. 4 shows time evolution of the mean stellar values for the dif-
ferent sets that expel the gas at 2 Myr of embedded evolution. Note
that the initial conditions for the AEOS and the SGO simulations
are the same for each turbulent setup, and differences depend only
on the background gas.

In AEOS simulations (thick lines), gas quickly forms clumps
that, as a difference with an isothermal EOS, are thermal pressure
supported. Anywhere an overdensity exists at the end of the star
formation phase, changing the EOS to adiabatic causes the gas to
quickly form roughly spherical gas clumps in internal equilibrium
that later merge into larger clumps. The stars follow the potential
generated by these clumps causing the star cluster half-mass radius
to decrease (first row, left-hand panel); however, the LSF remains
roughly constant and does not rise like in the static background case
(first row, right-hand panel), since gas is also being concentrated in
the centre. Interactions caused by the mergers help the star cluster
to reach equilibrium, as we can see in the Q panel of Fig. 4 (second
row, left-hand panel) the virial ratio increases roughly linearly and
usually 2 Myr are enough for these star clusters to reach equilibrium.
In contrast, in SGO simulations (thin lines) gas disperses instead of
forming clumps, overdensities are not so strong, and stars do not
have a clearly defined potential where to merge. Therefore, the local
free-fall time, and also the crossing time of the region (since stars
have small velocities; see second row, right-hand panel) is longer
and thus the time-scale that the cluster needs to virialize is longer.
As consequence, stars do not have time to virialize in the 2 Myr that
we evolve the embedded phase.

Despite those differences, the strength of the potential field gener-
ated by the gas is quite similar (see parameter B in Fig. 4; third row,
right-hand panel), with the AEOS simulations being stronger; how-
ever, the big difference we can appreciate in the B/A ratio (fourth
row, left-hand panel) comes from how the stars rearrange in both
scenarios. The parameter A (third row, left-hand panel) summarizes
the strength of the potential generated by the stars and decreases
with time for the AEOS simulations, this is a consequence of eras-
ing the substructures. At 0 Myr, stars are distributed in a fractal-like
substructure and stars are generally very close to each other in
comparison with the volume of the sphere that contains them. This
raises the potential energy of the stars; however, in AEOS simu-
lations substructure is erased very quickly due to mergers (as we
can see in the C parameter panel of Fig. 4; fourth row right-hand
panel). When substructure is erased, the stellar distribution spreads
over the volume decreasing the value of A. Even though we can see
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Figure 4. The evolution of the embedded star clusters for 2 Myr after the N = 1000 stars form. Values are means for each parameter of the 10 realizations for
each setup where standard deviations been omitted for clarity. From the top to bottom and the left- to right-hand panel: The stellar half-mass radius Rh, the LSF,
the virial ratio Q, the stellar velocity dispersion σ ∗, the structure parameters A and B, the B/A ratio, and the C parameter. Thick lines are AEOS simulations
and thin lines are SGO simulations. In both cases, divergence free setup is shown in a dot–dashed red line, curl-free in a dashed blue line, and mixed setup in
solid black lines. The standard deviation on each ensemble is averaged over time and shown at the right-hand side of each panel to represent a typical error. We
advise to the reader to pay attention to the minimum and maximum values of the y axes on the different panels.
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that substructure of the SGO simulations also decreases (C raises),
the C parameter never reach the C = 0.8 limit that split spherical
distributions from substructured distributions, and A decreases very
slowly.

As we see in Section 2.1, star cluster survivability depends on
Q and the B/A ratio, which never reach values above 1 in these
simulations, meaning that they can survive better. Considering also
the low values of Q for the SGO simulations, the simulated star
clusters are likely to be able to easily survive gas expulsion. We will
analyse the outcomes of gas expulsion in the next section.

4.2.3 Survival to gas expulsion

We expel the gas in the cluster at three different times after the
embedded phase starts, at the beginning (0 Myr), at 1, and at 2 Myr.
Then we measure the bound fraction after 15 Myr of gas free evo-
lution. Fig. 5 shows snapshots of one of our simulations for each
of the initial turbulent fields and numerical treatment of the back-
ground gas at the moment of gas expulsion, so that we can clearly
see the level of remaining substructure in the gas and stars at each
stage. Fig. 6 shows the results of the bound fraction measurement
after 15 Myr of gas expulsion for each set. We include the pre-
dictions of the analytical model described in Section 2.1, which
accounts for the independent substructure of the stars and gas as
error bars (i.e. equation 18). We also show the prediction of the
analytical model introduced in Farias et al. (2015), which assumes
a identical distribution of mass for the stars and the gas (i.e. equa-
tion (18) assuming B/A = 1). All predictions shown in Fig. 6
are deduced using the effective Qf discussed in Section 4.1; how-
ever, this choice is not very important as we will see later in this
section.

The high survival rates of simulations expelling the gas at 0 Myr
and the SGO simulations are mainly explained by the low virial
ratios that the stars have and their inability to reach virial equilib-
rium. The SGO simulations also have very low B/A ratios, so, in
general, they survive gas expulsion remarkably well. The AEOS
simulations show a trend very similar to the Plummer background
case presented in Section 4.1. The gas quickly rearranges into a
spherical distribution and the stars follow the potential well gener-
ated by the gas, forming (in general) a similar configuration than
the Plummer background case. In this last scenario, stars also have
the chance to reach virial equilibrium velocities, and, in general,
they are quite virialized in comparison to the SGO simulations by
the time we expel the gas.

The disagreement between the model introduced in Section (2.1)
and the numerical simulations is represented by the error bars in
Fig. 6. This reveals that the model introduced in Section 2.1 does
a good job at predicting the bound fraction (i.e. the error bars are
small). It is, however, remarkable that its performance predicting
bound fractions is not always better than the simple B/A = 1 model.
Thus, everything seems to be fairly well explained when measuring
the effective Qf and the consideration of substructure does not im-
prove the predictions significantly. And, as we will see later, even
if we do not use the effective Qf, predictions are still good without
considering the substructure.

We also test the alternative approach described in Section 2.2.
Since equation (21) depends only on one parameter, the immedi-
ately post gas expulsion virial ratio Qa, we put the results of all
the simulations performed in this work into Fig. 7. Qa works quite
well when estimating fbound and it has the advantage that it does
not depend on the background gas, all we need is accurate infor-

mation of the positions and velocities of the stars alone (assuming
instantaneous gas expulsion).

In order to quantify the performance of different analytical mod-
els, we measure the difference of the measured fbound with the esti-
mated fbound, and we calculate the standard error for all the simula-
tions performed in this paper. We consider six flavours of the ana-
lytical models introduced in Section 4 and in Farias et al. (2015).
These six flavours come about by considering three sets, namely
one set where substructure is ignored (i.e. B/A = 1), one set where
the substructure is measured through the parameters A and B, and
one set where the clusters are characterized by their Qa. For each
of these three sets, we consider both the global Qf and the effective
Qf as described in Section 4.1. We show the resulting residuals in
Fig. 8, where shadow areas show the standard deviation from the
models.

There is a remarkable agreement in the predictions between the
different analytical models, no matter if we measure substructure
effects or not. In all cases, the accuracy of the predictions is of
the order of 10 percentage points. When carefully measuring the
effects of independent substructure, predictions improve only by
1 percentage point. Using the effective or the global Q does not
improve the estimations significantly. However, this is because we
obtain, in general, high fbound values for simulations in the turbulent
setup, where the difference between global and effective Q is mini-
mal, i.e. the mean velocity of the bound entity is similar to the whole
cluster when fbound is big since the bound entity is a considerably
large subset of the cluster.

By eye, it appears that there is some improvement from the left-
hand panel of Fig. 8 to the middle and right-hand panels; however,
this is not reflected in the standard errors.

The results show that the inclusion of an arbitrary distribution for
the gas and the stars does not result in an unpredictable scenario. In
fact, the results suggest that it is possible to estimate how much mass
a cluster can retain in any distribution if it is possible to measure at
least the virial ratio of the stellar distribution, without caring for the
presence of substructure or even for the background gas.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have introduced a simple analytical model that estimates the
amount of mass a star cluster can retain if we instantaneously re-
move the remaining gas. We have presented this model in three
flavours: by assuming equal distributions for the gas and the stars,
by carefully measuring the effects of the independent substructure
of the gas and stars, and by only considering the dynamical state of
the cluster right after gas is expelled. We have tested our analytical
model by conducting simulations of instantaneous gas expulsion
in highly substructured, embedded star clusters. The amount of
substructure present at the time of gas expulsion was varied in a
controlled manner by varying the treatment of the background gas.

We find, independent of the treatment of the background gas,
the most important parameters to estimate the survival of a cluster
to gas expulsion are the LSF and the virial ratio at the moment
of gas expulsion. However, we also introduce another independent
parameter that works equally well – the post-gas-expulsion virial
ratio. As we are dealing with instantaneous gas expulsion, this is
effectively the same as the pre-gas-expulsion ratio if we consider
only the contribution from the stars, and we disregard the gas con-
tribution altogether. The main advantage of Qa is that we only need
information about the stars, ignoring completely the presence of the
gas.
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Figure 5. Example snapshots of embedded star clusters with each initial turbulent velocity field at the times when gas is expelled. Top panels of each six panel
sets show the evolution of the cluster when self-gravity of the gas is turned off (SGO simulations), bottom panels show the same distribution but evolving under
an adiabatic EOS for the gas (AEOS simulations). Colours represent the Logarithm of the column density measured in M� pc−2.
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Figure 6. Bound fractions for embedded star clusters at 15 Myr from the moment of gas expulsion. Different panels show sets of simulations expelling the
gas at 0 (top panel), 1 (middle panels), and 2 Myr (bottom) after the end of the star formation phase. Panels at the left-hand side are the results from SGO
simulations, and right-hand panels show the resulting bound fractions from AEOS simulations. The different natal velocity fields are shown as different symbols
with curl-free velocity fields in blue diamonds, divergence free fields in red squared, and the mixture of both in black circles. Error bars show the prediction of
the model presented in this work taking into account the substructure of the gas and the stars through the parameters A and B. Crosses are the predictions of
the model without considering substructure as described in Farias et al. (2015), i.e. assuming B/A = 1. All model predictions are calculated using the effective
Qf discussed in Section 4.1.
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Figure 7. The post-gas expulsion virial ratio Qa as an estimator of fbound for
all the simulations performed in this study. Black solid line is the prediction
of equation (21), which is not dependent on the geometry of the system,
with grey areas as the standard deviation from the curve. Values of Qa

are effective values. Vertical dashed line represents Qa = 0.5 for reader’s
reference.

The three flavours of the model presented in this paper work
equally well in most cases, estimating final bound fractions with
a standard error of ∼ 10 percentage points. The models are not
reliable when the bound fractions are low (�40 per cent), not be-
cause the models are wrong, but because of technical difficulties
when measuring an accurate virial ratio. An accurate measure of
such a value involves information about the individual members of
the cluster that will remain bound after gas expulsion, which is the
information we are trying to estimate in the first place. Or in other
words, it is more or less impossible to describe the behaviour of a
small sub-set of stars by using global parameters determined using
all the stars.

However, we find it very difficult to obtain low values of fbound

when testing our models in the more ‘realistic’ gas distributions.
Our more ‘realistic’ embedded star clusters are obtained from

star formation simulations that arguably are very simplistic but are
in agreement with other more sophisticated simulations: stars form
with sub-virial velocities in fractal-like structures that initially fol-
low the gas distribution, but stars quickly decouple from the gas
during the star cluster formation, trying to form their own indepen-
dent distribution. We find that this mode of star cluster formation
is quite stable against gas removal. Decoupling from the gas keeps
the LSF high, and their low stellar velocities remain low during the
star cluster formation process.

We also follow the evolution of the embedded star cluster after
stars form. We find that the behaviour of the gas during this phase
is critical to ‘prepare’ the cluster for gas expulsion. We test two
extremes of gas evolution: As a first attempt, we stop gravitational
collapse of the gas by switching the EOS of the gas from isothermal
to adiabatic. This scenario quickly forms clumps of stars that merges
into bigger clumps and stars couple again with the gas following
the overdensities. As an alternative approach, we just switch off the
self-gravity of the gas. In this case, gas disperses around the cluster,
and stars and gas remain decoupled since there are no significant

overdensities to follow. We obtain completely different results in
both cases since, in the first case, the system tends to form a spherical
cluster just like in our previous studies reaching virial equilibrium
in the process. In the second case, substructure is not erased so
efficiently and stars do not have the chance to merge and virialize
in the 2 Myr that we follow their evolution. Therefore, velocities
remain low at all times in this scenario, and star clusters are able to
retain at least ∼80 per cent of their mass.

While it can be argued that both scenarios are completely unphys-
ical, we wish to note that reality may be in between. The equation
of the state of the gas in the embedded phase is not completely
understood yet, as it involves complex heating processes. However,
after stars are formed, it is very unlikely that gas is able to accumu-
late inside the stellar distribution since radiation from stars would
quickly disperse the interior gas. The scenario (in terms of spatial
distribution) may be similar to the second case when we turned off
the gravity of the gas. Stars will give enough energy to the gas to
support and overcome the gravitational collapse. If further over-
densities form, they will form more likely outside the star cluster,
and therefore will not contribute to the gravitational potential of
the stellar cluster. The reader should also keep in mind that all our
results are a lower limit of cluster survival. We use instantaneous
gas expulsion that is the most destructive mode of gas expulsion.
The time-scales of gas expulsion are not known yet, but they cannot
be more destructive than the description used in this study.

Our results are in close agreement with a similar study realized by
Kruijssen et al. (2012), who analysed the outcome of the hydrody-
namical simulations performed by Bonnell, Bate & Vine (2003) and
Bonnell et al. (2008) studying the dynamical state of sub-clusters
in the simulations. They found that stars are formed sub-virial even
when ignoring the background gas, and gas fractions inside sub-
clusters are small enough to enable stellar sub-clusters to remain
bound when gas is expelled, even in absence of stellar feedback.
Lee & Goodwin (2016) have also noted that the virial ratio is the
only relevant parameter when estimating bound fractions. Our study
compliments this conclusions by adding that the gas fraction inside
the stellar component is not crucial, as long as the stars are able
to remain sub-virial during the embedded phase. This is likely to
happen if the gas does not form strong overdensities, e.g. is being
dispersed, or when stellar substructure in the star-forming region is
still important.

We, therefore, can summarize our main conclusions as follows:

(i) Accurate estimations of the maximum amount of mass that a
cluster will lose in the transition from the embedded phase to the
gas free phase are possible by measuring the dynamical state of the
stellar component alone (Qa), i.e. ignoring the presence of the gas.

(ii) Star clusters formed with low initial velocities are likely to
remain in a sub-virial state for long time. If the gas is not able to
concentrate and form considerable overdensities, then stellar sub-
strucutre lasts longer.

(iii) Since erasure of substructure is accompanied by virializa-
tion, we find that star clusters with high levels of substructure are
quite stable against gas expulsion, no matter how high the gas frac-
tion inside the stellar distribution is.

The first result makes estimations on observable embedded star
clusters easier since estimations of the potential energy from molec-
ular clouds are highly challenging. We emphasize that it is possible
to just ignore the gas to estimate how bound the cluster is. Con-
sidering that there is theoretical and observable evidence that star
clusters form in sub-virial states (e.g. Bonnell et al. 2003, 2008) and
that feedback would keep the gas disperse inside the stellar clusters
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Figure 8. The differences between the analytic models and the measured bound fractions for all the simulations performed in this paper. Top panels show
the performance of the models when measuring Qf with respect to the global mean velocity while bottom panels show the performance of the models when
measuring the effective Qf, i.e. when using the mean velocity of the clump that remains bound after gas expulsion (see Section 4.1). Left-hand panels show
the behaviour of the models when we do not take into account structure parameters (assuming B/A = 1). Middle panels show results when substructure is
included through the measure of the parameters A and B and right-hand panels show the performance of the model when using Qa as estimator of fbound (see
equation 21). Different natal velocity fields are shown in the same way than in Figs 6 and 7. Simulations with a Plummer background gas (see Fig. 2) are shown
as black open circles. We measure the performance of the analytical models through the standard deviation from the models represented by the grey shaded
areas. We can see that the consideration of the effective Qf does not change the performance (due to the generally big fbound obtained in this work) and the
consideration of substructure improves only the accuracy of the models on a 1 percentage point level. The use of Qa does not improve the estimations either.
We show that we can predict the outcome of all the simulations in this work with 10 percentage points uncertainly even in cases of high levels of substructure
in the gas and stars.

(if present at all, see Kruijssen et al. 2012), then the conditions in
young star clusters are such that they are very likely to survive gas
expulsion, and therefore gas expulsion may not be the culprit for
infant mortality.
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APPENDI X A: RESOLUTI ON CRI TERI A FO R
P L U M M E R G A S BAC K G RO U N D S I M U L AT I O N S

In SPH, a continuum of gas is transformed into a set of smoothed
particles with a certain smoothing length hi. Stars travelling through
this sea of particles can be unphysically deflected when gravitation-
ally interacting with these particles. The critical velocity at which a
star is considerably deflected in our Plummer gas background setup
is

vcrit =
√

2GMpl

Ngashi

(A1)

(see Hubber et al. 2013), and therefore the velocity dispersion of
the stars must be much larger than vcrit.

Hubber et al. (2013) developed a resolution criterion for the same
experiment we are exploring, but in a different implementation of
the SPH technique. In this section, we apply this criterion to the
grad-SPH implementation used in this work.

In the current implementation of the SPH technique, hi is obtained
by solving the equation

4π

3
h3

i (ρi + ρmin) − Nnb〈mi〉 = 0 (A2)

(Pelupessy 2005), where Nnb is the target number of neighbours,
ρmin is a small density threshold to avoid excessive large hi at the
edges of the simulation, and 〈mi〉 is the mean mass of the SPH
particles, in our case this is simply 〈mi〉 = Mpl/Ngas.

The smallest value of hi – the place with larger vcrit – is the central
region of the Plummer sphere where we have

ρmax ≈ 3Mpl

4πR3
pl

. (A3)

The smallest hi is then

hmin ≈
(

Nnb

Ngas

)1/3

Rpl, (A4)

where we have neglected the contribution of ρmin.
Assuming a spherical Plummer-like stellar distribution, the ve-

locity dispersion in the central region of the gas-star system is

σc ≈
√

1

6(1 − SFE)

GMpl

Rpl
, (A5)

where Mpl/(1 − SFE) = Mtot, i.e. the total mass in the cluster.
Then, the resolution criterion σ c/vcrit  1 becomes√

N
1/3
nb

12(1 − SFE)
N1/3

gas  1. (A6)

In the Plummer gas background simulations performed in this
work, we have used Ngas = 100K, Nnb = 64 and SFE = 0.2, and
the factor σ c/vcrit = 30.0, which is enough to avoid numerical
scattering. We note that this factor does not increase considerably
if Ngas increases. As shown by Hubber et al. (2011), a few thou-
sand particles is enough to accurately reproduce an equilibrium
polytrope.
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