
PRL 96, 158002 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
21 APRIL 2006
Mesoscopic Theory of Critical Fluctuations in Isolated Granular Gases
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Fı́sica Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain

(Received 24 November 2005; published 21 April 2006)
0031-9007=
Fluctuating hydrodynamics is used to describe the total energy fluctuations of a freely evolving gas of
inelastic hard spheres near the threshold of the clustering instability. They are shown to be governed only
by vorticity fluctuations that also lead to a renormalization of the average total energy. The theory predicts
a power-law divergent behavior of the scaled second moment of the fluctuations, and a scaling property of
their probability distribution, both in agreement with simulations results. A more quantitative comparison
between theory and simulation for the critical amplitudes and the form of the scaling function is also
carried out.
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Granular gases are assemblies of macroscopic particles
evolving independently between inelastic collisions [1].
The methods of nonequilibrium statistical mechanics, ki-
netic theory, and hydrodynamics have been successfully
extended to describe the observed macroscopic behavior
and also, although in a much more limited form, the
fluctuations around it [2]. The lack of energy conservation
makes these systems behave quite differently from mo-
lecular fluids. A simple widely used model for them con-
sists of smooth inelastic hard spheres (IHS’s), with mo-
mentum conserving dynamics. Inelasticity is characterized
by means of a constant coefficient of normal restitution �.

Recently, molecular dynamics (MD) simulation results
have been reported for the total energy fluctuations of a
two-dimensional freely evolving IHS gas, near the thresh-
old of the clustering instability [3]. The dimensionless
second moment was found to exhibit a power-law diver-
gent behavior with the distance to the instability. Also, the
scaled cooling rate was found to tend to zero according to a
power law, although in a weak way. Besides, the distribu-
tion function for the energy fluctuations, when properly
scaled, turned out to be independent of the parameters
defining the system. This was associated with a scaling
property of the distribution. Quite remarkably, the scaling
function was very well fitted by the same expression as
several equilibrium and nonequilibrium molecular systems
[4,5]. The main goal of this Letter is to provide an expla-
nation for the above results on the basis of fluctuating
hydrodynamics [6].

Consider an isolated system of N IHS’s of mass m and
diameter �. The total (kinetic) energy ~E of the system can
be expressed in the form [7]

2 ~E�t� �
Z
dr�d~n�r; t� ~T�r; t� �m~n�r; t�~u2�r; t��; (1)

where d is the dimension of the system, ~n�r; t� the number
density field, ~T�r; t� the temperature field, and ~u�r; t� the
flow field. The tildes indicate that all the quantities are
understood as fluctuating variables. In the following, sys-
tems in the homogeneous cooling state (HCS) will be
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considered. At a macroscopic level, this state is character-
ized by a constant uniform density nH, a vanishing flow
field uH � 0, and a uniform time-dependent temperature
obeying the law [8] @tTH�t� � ��H�TH�TH�t�, where �H /
TH�t�1=2 is the cooling rate. Moreover, we will restrict
ourselves to the region in which the amplitudes of the
fluctuations of the fields around their HCS values remain
small on the average [see below Eq. (12)]. Then retaining
up to quadratic order in the deviations, Eq. (1) yields

� ~E�t� � ~E�t� � EH�t�

�
1

2

Z
dr�dnH� ~T�r; t� � d�~n�r; t�� ~T�r; t�

�mnHj�~u�r; t�j2�: (2)

Here, EH�t� � dNTH�t�=2, �~n�r; t� � ~n�r; t� � nH,
�~u�r; t� � ~u�r; t�, and � ~T�r; t� � ~T�r; t� � TH�t�. It is
now convenient to introduce dimensionless position, l,
and time, s, scales by l � r=l0 and ds � vH�t�dt=l0, re-
spectively, where vH � �2TH�t�=m�1=2 is the thermal ve-
locity and l0 � �nH�

d�1��1 is proportional to the mean
free path. Moreover, dimensionless fields are defined by
��l; s� � �~n�r; t�=nH, !�l; s� � �~u�r; t�=vH�t�, and
��l; s� � � ~T�r; t�=TH�t�. Then, Eq. (2) takes the form

��s� �
�0�s�
V
�

1

V2

X
k

�
�k�s���k�s� �

2

d
j!k�s�j2

�
; (3)

where ��s� � � ~E�s�=EH�s�, V � Ld is the volume of the
system in the new units, and the Fourier transforms of the
fields have been introduced. It is assumed that after a time
of the order of the mean free time, the system reaches a
regime in which all its energy is stored in the hydrody-
namic modes. In this regime, the hydrodynamic fields are
expected to be described at a mesoscopic level by fluctuat-
ing hydrodynamic equations. Here, they will be assumed to
be linear Langevin equations obtained by linearizing the
Navier-Stokes equations for a granular gas around the
HCS. Moreover, it is postulated that the noise terms are
defined by the same properties as for molecular, elastic
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gases [9]. This is not expected to be true, except in the
nearly elastic limit, i.e., when � is very close to unity.
Consequently, the theory will be restricted in the following
to this limit. Thus, the transversal flow field or vorticity
field, !k?, obeys the following equation in the scaled
variables [6,9]:

�@s � �	=2� �	k2�!k?�s� � �k?�s�: (4)

In this expression, �	 � �H�TH�t��l0=vH�t� and �	 �
�H�TH�t��=mnHl0vH�t�, �H being the shear viscosity.
The noise term �k?�s� is Gaussian, with

h�k?�s��k0?�s
0�i �

V2

N
��s� s0��k;�k0�	k2l; (5)

l being the unit tensor in the subspace perpendicular to k,
and the angular brackets denoting average over the noise
realizations. A main advantage of using the scaled varia-
bles is that the coefficients in Eq. (4) and the strength of the
noise are time independent, contrary to what happens in the
original variables. The equation shows that !k? grows in
time for those values of k such that 	?�k� � �	=2�
�	k2 > 0. Although this does not imply by itself that the
HCS is linearly unstable, due to the time-dependent scaling
of the velocity introduced above, simulation results and
nonlinear analytical analysis of the Navier-Stokes equa-
tions have shown that this growth is the origin of the
clustering instability [10,11]. The minimum value of k
for a system of linear extent L, measured in the l scale,
is kmin � 2
=L. Then, for given values of the other pa-
rameters, the system becomes unstable if L > Lc, with
Lc � 2
�2�	=�	�1=2. For L< Lc, the HCS is stable and
the long time solution of Eq. (4) is

! k?�s� �
Z s

�1
ds0e�s�s

0�	?�k��k?�s
0�: (6)

From this expression, it is easily obtained

h!k?�s�!k0?�s0�i � �
V2�	k2

2N	?�k�
e�s�s

0�	?�k��k;�k0 l; (7)

for s 
 s0 � 1. This shows that as L approaches Lc from
below, the amplitudes of the fluctuations of the transversal
components of the velocity increase very fast due to con-
tributions from values of k close to kc. For the same reason
the decay of these fluctuations becomes very slow. This is
not the case for the fluctuations of the other hydrodynamic
fields, whose Langevin equations are decoupled from
Eq. (4) [6]. Therefore, it seems possible to consider a range

of values of f�L � �Lc � L�=Lc where the fluctuations of
!k;?, although still small, dominate over the fluctuations
of density and temperature. But, although this is true for
components with k > 0, some care is needed when analyz-
ing Eq. (3), since it involves �0�s�. The Langevin equation
for ��s� is obtained from the linearization around the HCS
of the macroscopic average equation for the total energy,
15800
@tE�t� � �
d
2

Z
drn�r; t��H�n; T�T�r; t�: (8)

The result is

@s��s� � �	
�
��s� �

3

2V
�0�s�

�
: (9)

Here, the dependence of the cooling rate on the tempera-
ture has been taken into account. Moreover, the noise term
discussed in Ref. [12], associated with the localized char-
acter of the energy dissipation, has been omitted. Although
it can be expected to be negligible far from the instability in
the quasielastic limit, this may not be the case near the
instability. Equation (9) shows a coupling between the
fluctuations of the volume averaged temperature and those
of the total energy. Use of Eq. (3) into Eq. (9) and neglect-
ing contributions from the density and longitudinal veloc-
ity fluctuations gives

@s��s� � �
�	

2
���s� � �!�s��;

�!�s� �
6

V2d

X
k

j!k?�s�j
2;

(10)

valid in the region f�L� 1. The long time limit of the
average value of ��s� is, therefore,

h�ist � lim
s!1
h �!�s�i � �

3�d� 1�

Nd

X
k

�	k2

	?�k�
: (11)

Since we are considering f�L� 1, the sum over k in the
above expression is dominated by the 2d modes with the

largest wavelength, for which 	?�kmin� ’ ��	f�L. Using
this into Eq. (11), it follows that there is a renormalization
by fluctuations of the average total energy of the HCS,
E�t� � h ~E�t�i, given by

E�t� � EH�t�
�

1�
3�d� 1�

nHL
d
c

f�L�1
�
: (12)

Consistency of the theory we are developing requires that

�nHLdcf�L��1 � 1, a condition involving the inelasticity
and the distance to the instability. Similarly, there is also
a renormalization of the temperature of the HCS, T�t� �
h ~T�t�ist, that can be evaluated directly from the long time
limit of the average of Eq. (9),

T�t� � TH�t�
�

1�
h�0ist
V

�
� TH�t�

�
1�

2�d� 1�

nHL
d
c

f�L�1
�
:

(13)

Alternatively, an effective temperature Tef�t� can be de-
fined as Tef�t� � 2E�t�=Nd. Of course, the form of the
renormalized law for the temperature depends on the defi-
nition used for the latter. In Ref., [3], what was actually
measured was �	ef � �ef�Tef�l0=vH�Tef�, with �ef defined by
@tTef � ��ef�Tef�Tef . Then, it is found
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�	ef � �	
"

1�
3�d� 1�

nHL
d
c

f�L�1

#
�1=2

: (14)

This result predicts that near the clustering instability

threshold, ��	�2
ef ��

	�2�=�	�2�A�f�L�1
with A��3�d�

1�=nHL
d
c , that is just the behavior observed in Ref. [3].

Define f�E�s�� � ~E�s��E�s��=E�s�� ���s��h�ist� 
EH�s�=E�s� and � �!�s� � �!�s� � h �!ist. Note that we are
considering deviations from the renormalized average val-
ues, i.e., including the fluctuations effects, and not from the
macroscopic bare values. A standard calculation using
Eq. (7) and exploiting the Gaussian character of the noise,
gives that at the instability threshold and for s
 s0�1 it is

h� �!�s�� �!�s0�ist �
9�d� 1�

n2
HL

2d
c d

f�L�2
e��s�s

0�=sc ; (15)

where sc � �2�	f�L��1 is a divergent ‘‘critical’’ relaxation
time. Now Eq. (10) can be easily solved with the result

hf�E�s�f�E�s0�ist � h� �!�s�� �!�s0�ist; (16)

valid for s 
 s0 � 1. Thus below the instability, the scaled
total energy fluctuations decay with the same rate as the
fluctuations of the kinetic energy associated with the trans-
versal modes of the velocity. For s � s0, Eq. (16) yields

�2
E � h�

f�E�2ist � A2
�
f�L�2

; (17)

with A2
� � 9�d� 1�=n2

HL
2d
c d. Therefore, close to the in-

stability point, the relative dispersion of the total energy
fluctuations �E presents a divergent behavior with a criti-
cal exponent �1, and an amplitude A� depending on nH
and � (through the value of the critical length Lc). Again,
this is the same behavior as reported in Ref. [3] from MD
simulations.

To carry out a more detailed check of the theory pre-
sented here, we have performed MD simulations of two-
dimensional systems with different values of � and nH (see

Table I). In all cases, the dependence on f�L of both the
cooling rate and the dispersion of the total energy, i.e., the
TABLE I. Comparison between the predicted and MD values
for the critical amplitudes of the cooling rate A� and the total
energy dispersion A�. All the values of the amplitudes have been
multiplied by 103.

nH�
2 � Atheory

� AMD
� Atheory

� AMD
�

0.02 0.9 0.88 1.11 0.62 0.6
0.02 0.8 1.62 3.63 1.15 1.5
0.1 0.98 1.06 0.50 0.75 0.47
0.1 0.95 2.4 2.38 1.7 1.45
0.2 0.98 1.97 2.34 1.4 1.34
0.2 0.95 4.59 7.78 3.24 3.6
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exponents in the power laws (14) and (17), was in agree-
ment with the theoretical predictions. This was illustrated
in Figs. 1 and 2 of Ref. [3] and no more details will be
given here. The comparison between the predicted critical
amplitudes and the MD results given in Table I can be
considered as satisfactory, in the sense that the theory
correctly predicts the order of magnitude of the amplitudes,
especially taking into account the smallness of the quanti-
ties being measured.

Next, let us proceed to investigate the form of the
probability distribution of the energy fluctuations.
Particularization of Eq. (4) for the modes with the smallest

possible value of k in the limit f�L� 1 gives

�@s � �	f�L�!k?�s� � �k?�s�; (18)

where it is understood that jkj � kmin. Define a new time

scale d� � �	f�Lds, and a new transversal velocity field by
! 	k? � !k?=L

d
c�

1=2
E . Equation (18) becomes

�@� � 1�!	k? � �
	
k?���; (19)

with

h�	k?����
	
k0?��

0�i �
d1=2

6�d� 1�1=2
�k;�k0���� �0�l : (20)

Equation (19) implies that the probability distribution for
!	k? with jkj � kmin near the clustering instability depends
only on the dimension d of the system. In fact, since the
noise term �	k?��� is Gaussian, it is trivial to write the long
time form of this distribution using Eq. (7) with s � s0,

Pst�!
	
k?� � �2
�

2
!�
��d�1�=2e�!

	2
k?
=2�2

!; (21)

with �2
! � d1=2=12�d� 1�1=2. In the time scale �, and

keeping only the dominant modes, Eq. (10) reads

f�L@�y � � 1

2

�
y�

6

d

X
jkj�kmin

j!	?k���j
2

�
; (22)

where y � �=�E and the sum is restricted to vectors kwith
jkj � kmin. From the comparison of Eqs. (19) and (22) it is
seen that, on the � scale and in the threshold of the
instability, y decays much faster than the dominant com-
ponents of !	k?. Consequently, for large � the solution of
Eq. (22) is y � 6

d

P
jkj�kmin

j!	?k���j
2, where the probability

distribution of the modes !	?k is given by Eq. (21). Since
the latter does not depend on the parameters of the system
other than the dimensionality, the same property follows
for the probability distribution of both y and the variable

f�E
�E
� ��d�d� 1��1=2 �

6

d

X
jkj�kmin

j!	k?j
2: (23)
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FIG. 1. Probability density function of the relative total energy
fluctuations �EP�f�E� for a system of inelastic hard disks. The
broken line is the theoretical prediction derived in this Letter and
the solid line Eq. (7).
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This is equivalent to saying that the probability distribution

for f�E verifies the scaling relation

P�f�E� � 1

�E
f
�f�E
�E

�
; (24)

where f is a scaling function. This is just the property
assumed in Ref. [3] and verified by MD simulations. Since
the probability distribution function for!	k? is known, it is
possible to numerically generate the probability distribu-

tion function P�f�E�. The result is shown in Fig. 1. Also
plotted is the function

��f�E� � K�ex�e
x
�a; x��b�s� f�E�; a � 
=2;

(25)

with K � 2:14, b � 0:938, and s � 0:374, that fits ex-

tremely well the MD results for �EP�f�E� [3]. It is impor-
tant to remark that fluctuations in a large number of
equilibrium and nonequilibrium systems exhibiting self-
organized criticality as well as confined turbulent flows
present the same kind of behavior [4,5]. Although the
agreement between both plotted curves is not so bad for

positive values of f�E, strong discrepancies are observed
for negative values. A major source for them is easily

identified from Eq. (23), that for d � 2 implies f�E=�E 

�

���
2
p

, while smaller values are found in the MD simula-
tions. Since Eq. (23) is a consequence of Eq. (9), it seems
15800
plausible that in order to elaborate a more accurate theory
the intrinsic noise associated with the cooling rate must be
taken into account.

In summary, we have developed a mesoscopic theory for
the fluctuations of the total energy of an isolated granular
gas near the threshold of the clustering instability. The
theory describes accurately the qualitative behavior ob-
tained in MD simulations, namely, the divergent behavior
of the dimensionless second moment and the decrease of
the apparent cooling rate. Also, it is consistent with the
observed scaling property of the probability distribution
function of the fluctuations. On the other hand, it seems
clear that a more refined formulation is needed in order to
get a more satisfactory quantitative agreement, especially
for the distribution function. Also, it should be interesting
to check whether a similar behavior occurs in more real-
istic models of granular gases in which � depends on the
relative velocity and, although present, the clustering in-
stability seems to be a transient phenomenon [13].
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