1,477 research outputs found
Allelic variation in HLA-B and HLA-C sequences and the evolution of the HLA-B alleles
Several new HLA-B (B8, B51, Bw62)- and
HLA-C (Cw6, Cw7)-specific genes were isolated either as
genomic cosmid or cDNA clones to study the diversity
of HLA antigens. The allele specificities were identified
by sequence analysis in comparison with published HLAB
and -C sequences, by transfection experiments, and
Southern and northern blot analysis using oligonucleotide
probes. Comparison of the classical HLA-A, -B, and -C
sequences reveals that allele-specific substitutions seem
to be rare events. HLA-B51 codes only for one allelespecific
residue: arginine at position 81 located on the cd
helix, pointing toward the antigen binding site. HLA-B8
contains an acidic substitution in amino acid position 9
on the first central/3 sheet which might affect antigen binding
capacity, perhaps in combination with the rare
replacement at position 67 (F) on the Alpha-l helix. HLA-B8
shows greatest homology to HLA-Bw42, -Bw41, -B7, and
-Bw60 antigens, all of which lack the conserved restriction
sites Pst I at position 180 and Sac I at position 131.
Both sites associated with amino acid replacements seem
to be genetic markers of an evolutionary split of the HLA-B
alleles, which is also observed in the leader sequences.
HLA-Cw7 shows 98% sequence identity to the JY328
gene. In general, the HLA-C alleles display lower levels
of variability in the highly polymorphic regions of the Alpha 1
and Alpha 2 domains, and have more distinct patterns of locusspecific
residues in the transmembrane and cytoplasmic
domains. Thus we propose a more recent origin for the
HLA-C locus
Carbohydrate utilization in obese subjects after an oral load of 100 g naturally-labelled [13C] glucose
1. Total carbohydrate (CHO) and ingested glucose oxidation was measured in five obese subjects with normal glucose tolerance after an oral load of 100g naturally-labelled [13C]glucose using indirect calorimetry and mass spectrometry respectively. 2. CHO utilization rate (107 ± 14 mg/min in the post-absorptive state) increased 30 min after the glucose load to reach a plateau (245±25 mg/min) between 90 and 120 min. It then decreased to basal values at 330 min. Cumulative CHO oxidation over 480 min was 66±7 g and the CHO oxidized above basal levels was 26 ± 7g. 3. Enrichment of expired carbon dioxide with 13c began at 45 min and maximum values were observed between 210 and 300 min. At 480 min, cumulative oxidation of the ingested glucose was 24± 2 g. 4. Compared with controls, the obese subjects exhibit an impairment of CHO utilization which precedes glucose intolerance. This impairment can be explained by an increased availability of free fatty acids which favours lipid oxidation at the expense of ingested [13C]glucose oxidatio
Comparison of carbohydrate utilization in man using indirect calorimetry and mass spectrometry after an oral load of 100 g naturally-labelled [13C]glucose
1. Carbohydrate (CHO) oxidation was measured simultaneously in a group of five normal subjects after an oral load of 100 g naturally-labelled [13C]glucose, using indirect calorimetry and mass spectrometry. 2. CHO utilization, calculated from the results of indirect calorimetry, increased 30 min after the glucose load to reach a peak at 90 min. It then decreased to reach basal values at 380 min. Cumulative total CHO oxidation at 480 min was 83±8g, and CHO oxidized above basal levels, 37±3 g. 3. Enrichment of expired carbon dioxide with 13C began at 60 min and maximum values were observed at 270 min. At 480 min, cumulative CHO oxidation measured by use of [13C]glucose was 29 g. The difference from calorimetric values can be attributed in part to the slow isotopic dilution in the glucose and bicarbonate pools. 4. Thus, approximately 30% of the glucose load was oxidized during the 8 h after its ingestion and this accounts for a significant part of the increased CHO oxidation (37 g), as measured by indirect calorimetr
Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions
For understanding carbon erosion and redeposition in nuclear fusion devices,
it is important to understand the transport and chemical break-up of
hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH
A^2\Delta - X^2\Pi Ger\"o band around 430 nm. The CH A-level can be excited
either by electron-impact or by dissociative recombination (D.R.) of
hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity
transport code ERO. A series of methane injection experiments was performed in
the high-density, low-temperature linear plasma generator Pilot-PSI, and
simulated emission intensity profiles were benchmarked against these
experiments. It was confirmed that excitation by D.R. dominates at T_e < 1.5
eV. The results indicate that the fraction of D.R. events that lead to a CH
radical in the A-level and consequent photon emission is at least 10%.
Additionally, quenching of the excited CH radicals by electron impact
de-excitation was included in the modeling. This quenching is shown to be
significant: depending on the electron density, it reduces the effective CH
emission by a factor of 1.4 at n_e=1.3*10^20 m^-3, to 2.8 at n_e=9.3*10^20
m^-3. Its inclusion significantly improved agreement between experiment and
modeling
Western Anacapia - A Summary of the Cenozoic History of the Northern Channel Islands
Weaver, D. W. and D. P. Doerner. "Western Anacapia - A Summary of the Cenozoic History of the Northern Channel Islands." In: 1st Symposium on the Biology of the California Islands. National Park Service, 1965. 13 - 20
A memetic algorithm for a multi-objective obnoxious waste location-routing problem : a case study
Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET
Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
- …
