365 research outputs found

    Simulated Fire Behavior and Fine-Scale Forest Structure Following Conifer Removal in Aspen-Conifer Forests in the Lake Tahoe Basin, USA

    Get PDF
    Quaking aspen is found in western forests of the United States and is currently at risk of loss due to conifer competition at within-stand scales. Wildfires in these forests are impactful owing to conifer infilling during prolonged fire suppression post-Euro-American settlement. Here, restoration cuttings seek to impact wildfire behavior and aspen growing conditions. In this study, we explored how actual and hypothetical cuttings with a range of conifer removal intensity altered surface fuel and overstory structure at stand and fine scales. We then simulated wildfires, examining fire behavior and effects on post-fire forest structures around aspen trees. We found that conifer removal constrained by lower upper diameter limits (\u3c56 cm) had marginal effects on surface fuel and overstory structure, likely failing to enhance resource conditions sufficiently to sustain aspen. Increasing the diameter limit also led to a higher likelihood of fire spread and a higher rate of spread, owing to greater within-canopy wind speed, though crown fire activity decreased. Our simulations suggest heavier treatments could facilitate reintroduction of fire while also dampening the effects of wildfires on forest structure. Cutting specifications that relax diameter limits and remove a substantial portion of conifer overstory could better promote aspen restoration and mitigate fire hazard

    Vascular Leak and Hypercytokinemia Associated with Severe Fever with Thrombocytopenia Syndrome Virus Infection in Mice

    Get PDF
    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever (VHF) endemic to China, South Korea, Japan, and Vietnam. Here we characterize the pathogenesis and natural history of disease in IFNAR-/- mice challenged with the HB29 strain of SFTS virus (SFTSV) and demonstrate hallmark features of VHF such as vascular leak and high concentrations of proinflammatory cytokines in blood and tissues. Treatment with FX06, a natural plasmin digest product of fibrin in clinical development as a treatment for vascular leak, reduced vascular permeability associated with SFTSV infection but did not significantly improve survival outcome. Further studies are needed to assess the role of vascular compromise in the SFTS disease process modeled in IFNAR-/- mice

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    The Essentials of Protein Import in the Degenerate Mitochondrion of Entamoeba histolytica

    Get PDF
    Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica

    Live Imaging of Mitosomes and Hydrogenosomes by HaloTag Technology

    Get PDF
    Hydrogenosomes and mitosomes represent remarkable mitochondrial adaptations in the anaerobic parasitic protists such as Trichomonas vaginalis and Giardia intestinalis, respectively. In order to provide a tool to study these organelles in the live cells, the HaloTag was fused to G. intestinalis IscU and T. vaginalis frataxin and expressed in the mitosomes and hydrogenosomes, respectively. The incubation of the parasites with the fluorescent Halo-ligand resulted in highly specific organellar labeling, allowing live imaging of the organelles. With the array of available ligands the HaloTag technology offers a new tool to study the dynamics of mitochondria-related compartments as well as other cellular components in these intriguing unicellular eukaryotes

    The Minimal Proteome in the Reduced Mitochondrion of the Parasitic Protist Giardia intestinalis

    Get PDF
    The mitosomes of Giardia intestinalis are thought to be mitochondria highly-reduced in response to the oxygen-poor niche. We performed a quantitative proteomic assessment of Giardia mitosomes to increase understanding of the function and evolutionary origin of these enigmatic organelles. Mitosome-enriched fractions were obtained from cell homogenate using Optiprep gradient centrifugation. To distinguish mitosomal proteins from contamination, we used a quantitative shot-gun strategy based on isobaric tagging of peptides with iTRAQ and tandem mass spectrometry. Altogether, 638 proteins were identified in mitosome-enriched fractions. Of these, 139 proteins had iTRAQ ratio similar to that of the six known mitosomal markers. Proteins were selected for expression in Giardia to verify their cellular localizations and the mitosomal localization of 20 proteins was confirmed. These proteins include nine components of the FeS cluster assembly machinery, a novel diflavo-protein with NADPH reductase activity, a novel VAMP-associated protein, and a key component of the outer membrane protein translocase. None of the novel mitosomal proteins was predicted by previous genome analyses. The small proteome of the Giardia mitosome reflects the reduction in mitochondrial metabolism, which is limited to the FeS cluster assembly pathway, and a simplicity in the protein import pathway required for organelle biogenesis

    Dirofilariasis mouse models for heartworm preclinical research

    Get PDF
    Introduction: Dirofilariasis, including heartworm disease, is a major emergent veterinary parasitic infection and a human zoonosis. Currently, experimental infections of cats and dogs are used in veterinary heartworm preclinical drug research. Methods: As a refined alternative in vivo heartworm preventative drug screen, we assessed lymphopenic mouse strains with ablation of the interleukin-2/7 common gamma chain (γc) as susceptible to the larval development phase of Dirofilaria immitis. Results: Non-obese diabetic (NOD) severe combined immunodeficiency (SCID)γc−/− (NSG and NXG) and recombination-activating gene (RAG)2−/−γc−/− mouse strains yielded viable D. immitis larvae at 2–4 weeks post-infection, including the use of different batches of D. immitis infectious larvae, different D. immitis isolates, and at different laboratories. Mice did not display any clinical signs associated with infection for up to 4 weeks. Developing larvae were found in subcutaneous and muscle fascia tissues, which is the natural site of this stage of heartworm in dogs. Compared with in vitro-propagated larvae at day 14, in vivo-derived larvae had completed the L4 molt, were significantly larger, and contained expanded Wolbachia endobacteria titres. We established an ex vivo L4 paralytic screening system whereby assays with moxidectin or levamisole highlighted discrepancies in relative drug sensitivities in comparison with in vitro-reared L4 D. immitis. We demonstrated effective depletion of Wolbachia by 70%−90% in D. immitis L4 following 2- to 7-day oral in vivo exposures of NSG- or NXG-infected mice with doxycycline or the rapid-acting investigational drug, AWZ1066S. We validated NSG and NXG D. immitis mouse models as a filaricide screen by in vivo treatments with single injections of moxidectin, which mediated a 60%−88% reduction in L4 larvae at 14–28 days. Discussion: Future adoption of these mouse models will benefit end-user laboratories conducting research and development of novel heartworm preventatives via increased access, rapid turnaround, and reduced costs and may simultaneously decrease the need for experimental cat or dog use

    Combinations of the azaquinazoline anti-Wolbachia agent, AWZ1066S, with benzimidazole anthelmintics synergise to mediate sub-seven-day sterilising and curative efficacies in experimental models of filariasis

    Get PDF
    Lymphatic filariasis and onchocerciasis are two major neglected tropical diseases that are responsible for causing severe disability in 50 million people worldwide, whilst veterinary filariasis (heartworm) is a potentially lethal parasitic infection of companion animals. There is an urgent need for safe, short-course curative (macrofilaricidal) drugs to eliminate these debilitating parasite infections. We investigated combination treatments of the novel anti-Wolbachia azaquinazoline small molecule, AWZ1066S, with benzimidazole drugs (albendazole or oxfendazole) in up to four different rodent filariasis infection models: Brugia malayi—CB.17 SCID mice, B. malayi—Mongolian gerbils, B. pahangi—Mongolian gerbils, and Litomosoides sigmodontis—Mongolian gerbils. Combination treatments synergised to elicit threshold (>90%) Wolbachia depletion from female worms in 5 days of treatment, using 2-fold lower dose-exposures of AWZ1066S than monotherapy. Short-course lowered dose AWZ1066S-albendazole combination treatments also delivered partial adulticidal activities and/or long-lasting inhibition of embryogenesis, resulting in complete transmission blockade in B. pahangi and L. sigmodontis gerbil models. We determined that short-course AWZ1066S-albendazole co-treatment significantly augmented the depletion of Wolbachia populations within both germline and hypodermal tissues of B. malayi female worms and in hypodermal tissues in male worms, indicating that anti-Wolbachia synergy is not limited to targeting female embryonic tissues. Our data provides pre-clinical proof-of-concept that sub-seven-day combinations of rapid-acting novel anti-Wolbachia agents with benzimidazole anthelmintics are a promising curative and transmission-blocking drug treatment strategy for filarial diseases of medical and veterinary importance
    corecore