15 research outputs found

    KnotProt 2.0: a database of proteins with knots and other entangled structures.

    Get PDF
    The KnotProt 2.0 database (the updated version of the KnotProt database) collects information about proteins which form knots and other entangled structures. New features in KnotProt 2.0 include the characterization of both probabilistic and deterministic entanglements which can be formed by disulfide bonds and interactions via ions, a refined characterization of entanglement in terms of knotoids, the identification of the so-called cysteine knots, the possibility to analyze all or a non-redundant set of proteins, and various technical updates. The KnotProt 2.0 database classifies all entangled proteins, represents their complexity in the form of a knotting fingerprint, and presents many biological and geometrical statistics based on these results. Currently the database contains >2000 entangled structures, and it regularly self-updates based on proteins deposited in the Protein Data Bank (PDB)

    Ion-Mobility Mass Spectrometry for the Rapid Determination of the Topology of Interlocked and Knotted Molecules.

    Get PDF
    A rapid screening method based on traveling-wave ion-mobility spectrometry (TWIMS) combined with tandem mass spectrometry provides insight into the topology of interlocked and knotted molecules, even when they exist in complex mixtures, such as interconverting dynamic combinatorial libraries. A TWIMS characterization of structure-indicative fragments generated by collision-induced dissociation (CID) together with a floppiness parameter defined based on parent- and fragment-ion arrival times provide a straightforward topology identification. To demonstrate its broad applicability, this approach is applied here to six Hopf and two Solomon links, a trefoil knot, and a [3]catenate.Deutsche Forschungsgemeinschaft (CRC 765 “Multivalency”). Alexander von Humboldt Foundation. Swiss National Science Foundation (PZ00P2_161270). Fondation Wiener-Anspach

    Current approaches to disentagle the mystery of knotted protein folding

    No full text
    The folding of knotted proteins remains a mystery both for theoreticians and experimentalists. Despite the development of new models, the driving force for self-tying remains elusive and the principle of minimal frustration cannot be reproduced in silico. In this paper we review different models used to understand protein self-knotting and suggest, how to improve the structure based model to observe efficient folding. Our preliminary results show, that including information about some amino acids properties, or reducing the set of physical contacts may be beneficial for modeling of the knotted protein folding

    Protein Knotting by Active Threading of Nascent Polypeptide Chain Exiting from the Ribosome Exit Channel.

    No full text
    The mechanism of folding of deeply knotted proteins into their native structure is still not understood. Current thinking about protein folding is dominated by the Anfinsen dogma, stating that the structure of the folded proteins is uniquely dictated by the amino acid sequence of a given protein and that the folding is driven uniquely by the energy gained from interactions between amino acids that contact each other in the native structure of the protein. The role of ribosomes in protein folding was only seen as permitting the folding to progress from the N-terminal part of nascent protein chains. We propose here that ribosomes can participate actively in the folding of knotted proteins by actively threading nascent chains emerging from the ribosome exit channels through loops formed by a synthesized earlier portion of the same protein. Our simulations of folding of deeply knotted protein Tp0624 positively verify the proposed ribosome-driven active threading mechanism leading to the formation of deeply knotted proteins

    A topological selection of folding pathways from native states of knotted proteins

    No full text
    Understanding how knotted proteins fold is a challenging problem in biology. Researchers have proposed several models for their folding pathways, based on theory, simulations and experiments. The geometry of proteins with the same knot type can vary substantially and recent simulations reveal different folding behaviour for deeply and shallow knotted proteins. We analyse proteins forming open-ended trefoil knots by introducing a topologically inspired statistical metric that measures their entanglement. By looking directly at the geometry and topology of their native states, we are able to probe different folding pathways for such proteins. In particular, the folding pathway of shallow knotted carbonic anhydrases involves the creation of a double-looped structure, contrary to what has been observed for other knotted trefoil proteins. We validate this with Molecular Dynamics simulations. By leveraging the geometry and local symmetries of knotted proteins’ native states, we provide the first numerical evidence of a double-loop folding mechanism in trefoil proteins

    Entangled Proteins: Knots, Slipknots, Links, and Lassos

    No full text
    In recent years the studies of entangled proteins have grown into the whole new, interdisciplinary and rapidly developing field of research. Here we present various types of entangled proteins studied within this field, which form knots, slipknots, links, and lassos. We discuss their geometric features and indicate what biological and physical role the entanglement plays. We also discuss mathematical tools necessary to analyze such structures and present databases and servers assembling information about entangled proteins: KnotProt, LinkProt, and LassoProt
    corecore