1,666 research outputs found

    4U2206+54 - an Unusual High Mass X-ray Binary with a 9.6 Day Orbital Period but No Strong Pulsations

    Get PDF
    Rossi X-ray Timing Explorer All-Sky Monitor observations of the X-ray source 4U2206+54, previously proposed to be a Be star system, show the X-ray flux to be modulated with a period of approximately 9.6 days. If the modulation is due to orbital variability then this would be one of the shortest orbital periods known for a Be star X-ray source. However, the X-ray luminosity is relatively modest whereas a high luminosity would be predicted if the system contains a neutron star accreting from the denser inner regions of a Be star envelope. Although a 392s pulse period was previously reported from EXOSAT observations, a reexamination of the EXOSAT light curves does not show this or any other periodicity. An analysis of archival RXTE Proportional Counter Array observations also fails to show any X-ray pulsations. We consider possible models that may explain the properties of this source including a neutron star with accretion halted at the magnetosphere and an accreting white dwarf.Comment: Accepted for publication in the Astrophysical Journa

    Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis

    Get PDF
    Through the application of three pair-wise bivariate BEKK models, this paper examines the conditional volatility dynamics along with interlinkages and conditional correlations between three pairs of cryptocurrencies, namely Bitcoin-Ether, Bitcoin-Litecoin, and Ether-Litecoin. While cryptocurrency price volatility is found to be dependent on its own past shocks and past volatility, we find evidence of bi-directional shock transmission effects between Bitcoin and both Ether and Litecoin, and uni-directional shock spillovers from Ether to Litecoin. Finally, we identify bi-directional volatility spillover effects between all the three pairs and provide evidence that time-varying conditional correlations exist and are mostly positive

    Evidence for a very slow X-ray pulsar in 2S0114+650 from RXTE All-Sky Monitor Observations

    Full text link
    Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM) observations of the X-ray binary 2S0114+650 show modulations at periods close to both the optically derived orbital period (11.591 days) and proposed pulse period (~ 2.7 hr). The pulse period shows frequency and intensity variability during the more than 2 years of ASM observations analyzed. The pulse properties are consistent with this arising from accretion onto a rotating neutron star and this would be the slowest such period known. The shape of the orbital light curve shows modulation over the course of the entire orbit and a comparison is made with the orbital light curve of Vela X-1. However, the expected phase of eclipse, based on an extrapolation of the optical ephemeris, does not correspond with the observed orbital minimum. The orbital period derived from the ASM light curve is also slightly longer than the optical period.Comment: To be published in the Astrophysical Journal, 1999, volume 511. 9 figure

    Orbital Period Determinations for Four SMC Be/X-ray Binaries

    Full text link
    We present an optical and X-ray study of four Be/X-ray binaries located in the Small Magellanic Cloud (SMC). OGLE I-band data of up to 11 years of semi-continuous monitoring has been analysed for SMC X-2, SXP172 and SXP202B, providing both a measurement of the orbital period (Porb = 18.62, 68.90, and 229.9 days for the pulsars respectively) and a detailed optical orbital profile for each pulsar. For SXP172 this has allowed a direct comparison of the optical and X-ray emission seen through regular RXTE monitoring, revealing that the X-ray outbursts precede the optical by around 7 days. Recent X-ray studies by XMM-Newton have identified a new source in the vicinity of SXP15.3 raising doubt on the identification of the optical counterpart to this X-ray pulsar. Here we present a discussion of the observations that led to the proposal of the original counterpart and a detailed optical analysis of the counterpart to the new X-ray source, identifying a 21.7 d periodicity in the OGLE I-band data. The optical characteristics of this star are consistent with that of a SMC Be/X-ray binary. However, this star was rejected as the counterpart to SXP15.3 in previous studies due to the lack of H{\alpha} emission.Comment: Accepted for publication in MNRAS, 11 pages, 17 figure

    RXTE Observations of the Be star X-ray Transient X0726-260 (4U0728-25) - Orbital and Pulse Periods

    Get PDF
    Rossi X-ray Timing Explorer (RXTE) All Sky Monitor observations of the transient Be star X-ray source X0726-260 suggest a 34.5 day period. This is apparently confirmed by a serendipitous RXTE Proportional Counter Array (PCA) slew detection of the source on 1997 May 5, near the time of a predicted flux maximum. A subsequent 5000 second pointed observation of X0726-260 with the RXTE PCA detector was carried out on 1997 June 7, when X0726-260 was predicted to be bright again, and this revealed pulsations at a period of 103.2 seconds. If the 34.5 day period is orbital, then the pulse period is surprisingly long compared to that predicted by the correlation between orbital period and spin period observed for other Be/neutron star systems. A possible similarity with GROJ2058+42 is briefly discussed.Comment: 7 pages LateX, 7 figures. To be published in Astrophysical Journal Letter

    An Investigation of Be/X-ray Pulsars with OGLE-III Data

    Get PDF
    We have studied five seasons of OGLE-III data for eight SMC Be/X-ray pulsars for which no other survey data were available. We have determined orbital periods for four of these binary systems, one of which also shows nonradial pulsations. Optical identification of SMC X-2 is reconsidered, but no periods were found for either of the two possible candidates

    Discovery of a 75 day orbit in XTE J1543-568

    Get PDF
    Dedicated monitoring of the transient X-ray pulsar XTE J1543-568 during the first year after its discovery has revealed the unambiguous detection of a binary orbit. The orbital period is 75.56+/-0.25 d, and the projected semi-major axis 353+/-8 lt-sec. The mass function and position in the pulse period versus orbital period diagram are consistent with XTE J1543-568 being a Be X-ray binary. The eccentricity of less than 0.03 (2 sigma) is among the lowest for the 12 Be X-ray binaries whose orbits have now been measured. This confirms the suspicion that small kick velocities of neutron stars during supernovae are more common than expected. The distance is estimated to be larger than 10 kpc, and the luminosity at least 1E37 erg/s.Comment: Accepted for publication in ApJ Letter

    The Orbital Solution and Spectral Classification of the High-Mass X-Ray Binary IGR J01054-7253 in the Small Magellanic Cloud

    Full text link
    We present X-ray and optical data on the Be/X-ray binary (BeXRB) pulsar IGR J01054-7253 = SXP11.5 in the Small Magellanic Cloud (SMC). Rossi X-ray Timing Explorer (RXTE) observations of this source in a large X-ray outburst reveal an 11.483 +/- 0.002s pulse period and show both the accretion driven spin-up of the neutron star and the motion of the neutron star around the companion through Doppler shifting of the spin period. Model fits to these data suggest an orbital period of 36.3 +/- 0.4d and Pdot of (4.7 +/- 0.3) x 10^{-10} ss^{-1}. We present an orbital solution for this system, making it one of the best described BeXRB systems in the SMC. The observed pulse period, spin-up and X-ray luminosity of SXP11.5 in this outburst are found to agree with the predictions of neutron star accretion theory. Timing analysis of the long-term optical light curve reveals a periodicity of 36.70 +/- 0.03d, in agreement with the orbital period found from the model fit to the X-ray data. Using blue-end spectroscopic observations we determine the spectral type of the counterpart to be O9.5-B0 IV-V. This luminosity class is supported by the observed V-band magnitude. Using optical and near-infrared photometry and spectroscopy, we study the circumstellar environment of the counterpart in the months after the X-ray outburst.Comment: 12 pages, 13 figures and 3 tables. This paper has been accepted for publication in MNRA

    Wind accretion in the massive X-ray binary 4U 2206+54: abnormally slow wind and a moderately eccentric orbit

    Get PDF
    Massive X-ray binaries are usually classified depending on the properties of the donor star in classical, supergiant and Be X-ray binaries. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_inf) of ~350 km/s, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of 9.5591 d with maximum X-ray flux at MJD 51856.6. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15. Moreover, the low value of v_inf solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53 2790, which is probably an O9.5 V star. We note that changes in v_inf and/or the mass-loss rate of the primary alone cannot explain the diferent patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries. (Abridged)Comment: 12 pages, 9 figures; to appear in A&A; corrected typos, updated references; matches published versio
    • …
    corecore