406 research outputs found

    Statistical Properties of Strain and Rotation Tensors in Geodetic Network

    Get PDF
    This article deals with the characteristics of deformation of a body or a figure represented by discrete points of geodetic network. In each point of geodetic network kinematic quantities are considered normal strain, shear strain, and rotation. They are computed from strain and rotation tensors represented by displacement gradient matrix on the basis of known point displacement vector. Deformation analysis requires the appropriate treatment of kinematic quantities. Thus statistical properties of each quantity in a single point of geodetic network have to be known. Empirical results have shown that statistical properties are strongly related to the orientation in single point and local geometry of the geodetic network. Based on the known probability distribution of kinematic quantities the confidence areas for each quantity in a certain point can be defined. Based on this we can carry out appropriate statistical testing and decide whether the deformation of network in each point is statistically significant or not. On the other hand, we are able to ascertain the quality of the geometry of the geodetic network. The known characteristics of the probability distributions of two strain parameters and rotation in each point can serve as useful tools in the procedures of optimizing the geometry of the geodetic networks

    A Scalable, Self-Analyzing Digital Locking System for use on Quantum Optics Experiments

    Full text link
    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrodinger cat states.Comment: 7 pages, 5 figure

    Photon number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    Get PDF
    The non-linearity of a conditional photon-counting measurement can be used to `de-Gaussify' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement; unambiguously reconstructing the statistics of the non-Gaussian one and two photon subtracted squeezed vacuum states. Although our photon number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon number resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum information tasks relying on the outcomes of mean values.Comment: 4 pages, 3 figures. Theory section expanded in response to referee comment

    Micro-scale surface-patterning influences biofilm formation

    Get PDF
    The formation of biofilms on indwelling/implanted medical devices is a common problem. One of the approaches used to prevent biofilm formation on medical devices is to inhibit bacterial attachment by modification of the synthetic polymers used to fabricate the device. In this work, we assessed how micro-scale features (patterns) imprinted onto the surface of silicone elastomer similar to that used for medical applications influenced biofilm formation by Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. Patterns were transferred from a multi-patterned oxidized silicon-wafer master-template to silicone elastomer. Features consisted of bars, squares, and circles each extending 0.51 µm above the surface. Feature sizes ranged between 1.78 and 22.25 µm. Distances separating features ranged between 0.26 and 17.35 µm. Bacterial biofilm formation on discs cut from imprinted silicone elastomer was assessed by direct microscopic observation and quantified as the surface area covered by biofilm. Unpatterned silicone elastomer served as a control. Several of the micro-scale patterns imprinted into the silicone elastomer significantly reduced biofilm formation by each bacterium and interrupted biofilm continuity. Although there were differences in detail among strains, bacteria tended to attach in the area between features more than to the surface of the feature itself

    Charged black holes: Wave equations for gravitational and electromagnetic perturbations

    Get PDF
    A pair of wave equations for the electromagnetic and gravitational perturbations of the charged Kerr black hole are derived. The perturbed Einstein-Maxwell equations in a new gauge are employed in the derivation. The wave equations refer to the perturbed Maxwell spinor Φ0\Phi_0 and to the shear σ\sigma of a principal null direction of the Weyl curvature. The whole construction rests on the tripod of three distinct derivatives of the first curvature κ\kappa of a principal null direction.Comment: 12 pages, to appear in Ap.

    Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    Get PDF
    The nonlinearity of a conditional photon-counting measurement can be used to "de-Gaussify" a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number- resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values

    Second order gauge invariant gravitational perturbations of a Kerr black hole

    Full text link
    We investigate higher than the first order gravitational perturbations in the Newman-Penrose formalism. Equations for the Weyl scalar ψ4,\psi_4, representing outgoing gravitational radiation, can be uncoupled into a single wave equation to any perturbative order. For second order perturbations about a Kerr black hole, we prove the existence of a first and second order gauge (coordinates) and tetrad invariant waveform, ψI\psi_I, by explicit construction. This waveform is formed by the second order piece of ψ4\psi_4 plus a term, quadratic in first order perturbations, chosen to make ψI\psi_I totally invariant and to have the appropriate behavior in an asymptotically flat gauge. ψI\psi_I fulfills a single wave equation of the form TψI=S,{\cal T}\psi_I=S, where T{\cal T} is the same wave operator as for first order perturbations and SS is a source term build up out of (known to this level) first order perturbations. We discuss the issues of imposition of initial data to this equation, computation of the energy and momentum radiated and wave extraction for direct comparison with full numerical approaches to solve Einstein equations.Comment: 19 pages, REVTEX. Some misprints corrected and changes to improve presentation. Version to appear in PR
    corecore