Digital control of optics experiments has many advantages over analog control
systems, specifically in terms of scalability, cost, flexibility, and the
integration of system information into one location. We present a digital
control system, freely available for download online, specifically designed for
quantum optics experiments that allows for automatic and sequential re-locking
of optical components. We show how the inbuilt locking analysis tools,
including a white-noise network analyzer, can be used to help optimize
individual locks, and verify the long term stability of the digital system.
Finally, we present an example of the benefits of digital locking for quantum
optics by applying the code to a specific experiment used to characterize
optical Schrodinger cat states.Comment: 7 pages, 5 figure