64,191 research outputs found

    Strong and Electromagnetic Decays of Two New LambdacLambda_c^* Baryons

    Full text link
    Two recently discovered excited charm baryons are studied within the framework of Heavy Hadron Chiral Perturbation Theory. We interpret these new baryons which lie 308 \MeV and 340 \MeV above the Λc\Lambda_c as I=0I=0 members of a P-wave spin doublet. Differential and total decay rates for their double pion transitions down to the Λc\Lambda_c ground state are calculated. Estimates for their radiative decay rates are also discussed. We find that the experimentally determined characteristics of the Λc\Lambda_c^* baryons may be simply understood in the effective theory.Comment: 16 pages with 4 figures not included but available upon request, CALT-68-191

    Observation of confined propagation in Bragg waveguides

    Get PDF
    A new type of waveguiding in a slab dielectric bounded on one side by air and on the other by a periodic layered medium (grown by molecular beam epitaxy) has been demonstrated

    Efficiency and marginal cost pricing in dynamic competitive markets with friction

    Get PDF
    This paper examines a dynamic general equilibrium model with supply friction. With or without friction, the competitive equilibrium is efficient. Without friction, the market price is completely determined by the marginal production cost. If friction is present, no matter how small, then the market price fluctuates between zero and the "choke-up" price, without any tendency to converge to the marginal production cost, exhibiting considerable volatility. The distribution of the gains from trading in an efficient allocation may be skewed in favor of the supplier, although every player in the market is a price taker.Dynamic general equilibrium model with supply friction, choke-up price, marginal production cost, welfare theorems

    Welfare Impact of Trade Liberalization

    Get PDF
    This paper constructs a static Applied General Equilibrium Model and analyzes the distributional impact of trade reforms. To calibrate our model, we work with the Household Expenditure Survey to disaggregate household groups by income, age, and skill intensity, and the Input-Output table to construct a Social Accounting Matrix. Our benchmark simulation looks at Slovenia joining the European Union. We then compare with two alternative scenarios: a free trade agreement between Slovenia and the EU, and an alternative fiscal arrangement of distributing tariff revenues under the EU. While trade reforms lead to falling prices in the import sector, rising production in the export sector, and improvement in aggregate welfare, the distributional impacts across household groups vary in its degree.Trade Liberalization; Free Trade Agreement; Customs Union; Social Accounting Matrix; Household welfare

    Classical Strongly Coupled QGP: VII. Shear Viscosity and Self Diffusion

    Full text link
    We construct the Liouville operator for the SU(2) classical colored Coulomb plasma (cQGP) for arbitrary values of the Coulomb coupling Γ=V/K\Gamma=V/K, the ratio of the mean Coulomb to kinetic energy. We show that its resolvent in the classical colored phase space obeys a hierarchy of equations. We use a free streaming approximation to close the hierarchy and derive an integral equation for the time-dependent structure factor. Its reduction by projection yields hydrodynamical equations in the long-wavelength limit. We discuss the character of the hydrodynamical modes at strong coupling. The shear viscosity is shown to exhibit a minimum at Γ8\Gamma\approx 8 near the liquid point. This minimum follows from the cross-over between the single particle collisional regime which drops as 1/Γ5/21/\Gamma^{5/2} and the hydrodynamical collisional regime which rises as Γ1/2\Gamma^{1/2}. The self-diffusion constant drops as 1/Γ3/21/\Gamma^{3/2} irrespective of the regime. We compare our results to molecular dynamics simulations of the SU(2) colored Coulomb plasma. We also discuss the relevance of our results for the quantum and strongly coupled quark gluon plasma (sQGP)Comment: 36 pages, 14 figure

    Scattering phase shifts in quasi-one-dimension

    Full text link
    Scattering of an electron in quasi-one dimensional quantum wires have many unusual features, not found in one, two or three dimensions. In this work we analyze the scattering phase shifts due to an impurity in a multi-channel quantum wire with special emphasis on negative slopes in the scattering phase shift versus incident energy curves and the Wigner delay time. Although at first sight, the large number of scattering matrix elements show phase shifts of different character and nature, it is possible to see some pattern and understand these features. The behavior of scattering phase shifts in one-dimension can be seen as a special case of these features observed in quasi-one-dimensions. The negative slopes can occur at any arbitrary energy and Friedel sum rule is completely violated in quasi-one-dimension at any arbitrary energy and any arbitrary regime. This is in contrast to one, two or three dimensions where such negative slopes and violation of Friedel sum rule happen only at low energy where the incident electron feels the potential very strongly (i.e., there is a very well defined regime, the WKB regime, where FSR works very well). There are some novel behavior of scattering phase shifts at the critical energies where SS-matrix changes dimension.Comment: Minor corrections mad

    Spectral dimension of a quantum universe

    Full text link
    In this paper, we calculate in a transparent way the spectral dimension of a quantum spacetime, considering a diffusion process propagating on a fluctuating manifold. To describe the erratic path of the diffusion, we implement a minimal length by averaging the graininess of the quantum manifold in the flat space case. As a result we obtain that, for large diffusion times, the quantum spacetime behaves like a smooth differential manifold of discrete dimension. On the other hand, for smaller diffusion times, the spacetime looks like a fractal surface with a reduced effective dimension. For the specific case in which the diffusion time has the size of the minimal length, the spacetime turns out to have a spectral dimension equal to 2, suggesting a possible renormalizable character of gravity in this regime. For smaller diffusion times, the spectral dimension approaches zero, making any physical interpretation less reliable in this extreme regime. We extend our result to the presence of a background field and curvature. We show that in this case the spectral dimension has a more complicated relation with the diffusion time, and conclusions about the renormalizable character of gravity become less straightforward with respect to what we found with the flat space analysis.Comment: 5 pages, 1 figure, references added, typos corrected, title changed, final version published in Physical Review

    Anomalous Gluon Self-Interactions and ttˉt \bar{t} Production

    Get PDF
    Strong-interaction physics that lies beyond the standard model may conveniently be described by an effective Lagrangian. The only genuinely gluonic CP-conserving term at dimension six is the three-gluon-field-strength operator G3G^3. This operator, which alters the 3-gluon and 4-gluon vertices form their standard model forms, turns out to be difficult to detect in final states containing light jets. Its effects on top quark pair production hold the greatest promise of visibility.Comment: Latex file using [aps,aipbook,floats,epsf]{revtex}. 12 pages, 4 Postscript figures. Full PS copy at http://smyrd.bu.edu/htfigs/htfigs.html Talk presented by EHS at the International Symposium on Vector Boson Self-Interactions, UCLA, Feb. 1-3, 199

    Magnetic Moments of Heavy Baryons

    Get PDF
    First non-trivial chiral corrections to the magnetic moments of triplet (T) and sextet (S^(*)) heavy baryons are calculated using Heavy Hadron Chiral Perturbation Theory. Since magnetic moments of the T-hadrons vanish in the limit of infinite heavy quark mass (m_Q->infinity), these corrections occur at order O(1/(m_Q \Lambda_\chi^2)) for T-baryons while for S^(*)-baryons they are of order O(1/\Lambda_\chi^2). The renormalization of the chiral loops is discussed and relations among the magnetic moments of different hadrons are provided. Previous results for T-baryons are revised.Comment: 11 Latex pages, 2 figures, to be published in Phys.Rev.
    corecore