1,322 research outputs found

    Analysis of wing-body interaction flutter for a preliminary space shuttle design

    Get PDF
    Subsonic flutter analyses for a preliminary space shuttle design were performed to determine the effect of wing-body aerodynamic interaction on the vehicle flutter speed. It was found that the proximity of the large bodies of the shuttle to the wing reduces critical flutter speed by 11%. Aerodynamic reflection off the bodies is the dominant interaction effect while aerodynamic forces caused by body motion are of secondary importance in most cases. The analyses employed a doublet-lattice representation of the space shuttle, where in the wing and body surfaces were modeled by a lattice of nonplanar lifting surface elements. Axial singularities were introduced to account for body incidence, volume, and camber (slender body) effects. A series of studies on the placement and number of these elements was performed to ensure convergence of the results

    Polarization Aberrations

    Get PDF
    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs

    Iowan Suggested Memorial Day

    Full text link

    Iowan Suggested Memorial Day

    Get PDF

    The percutaneous absorption of soman in a damaged skin porcine model and the evaluation of WoundStat™ as a topical decontaminant

    Get PDF
    PURPOSE: The aim of this study was to evaluate a candidate haemostat (WoundStat™), down-selected from previous in vitro studies, for efficacy as a potential skin decontaminant against the chemical warfare agent pinacoyl methylfluorophosphonate (Soman, GD) using an in vivo pig model. MATERIALS AND METHODS: An area of approximately 3 cm2 was dermatomed from the dorsal ear skin to a nominal depth of 100 µm. A discrete droplet of 14C-GD (300 µg kg-1) was applied directly onto the surface of the damaged skin at the centre of the dosing site. Animals assigned to the treatment group were given a 2 g application of WoundStat™ 30 s after GD challenge. The decontamination efficacy of WoundStat™ against GD was measured by the direct quantification of the distribution of 14C-GD, as well as routine determination of whole blood cholinesterase and physiological measurements. RESULTS: WoundStat™ sequestered approximately 70% of the applied 14C-GD. Internal radiolabel recovery from treated animals was approximately 1% of the initially applied dose. Whole blood cholinesterase levels decreased to less than 10% of the original value by 15 min post WoundStat™ treatment and gradually decreased until the onset of apnoea or until euthanasia. All treated animals showed signs of GD intoxication that could be grouped into early (mastication, fasciculations and tremor), intermediate (miosis, salivation and nasal secretions) and late onset (lacrimation, body spasm and apnoea) effects. Two of the six WoundStat™ treated animals survived the study duration. CONCLUSIONS: The current study has shown that the use of WoundStat™ as a decontaminant on damaged pig ear skin was unable to fully protect against GD toxicity. Importantly, the findings indicate that the use of WoundStat™ in GD contaminated wounds would not exacerbate GD toxicity. These data suggest that absorbent haemostatic products may offer some limited functionality as wound decontaminants.Peer reviewedFinal Accepted Versio

    Modeling raccoon (Procyon lotor) habitat connectivity to identify potential corridors for rabies spread

    Get PDF
    The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services National Rabies Management Program has conducted cooperative oral rabies vaccination (ORV) programs since 1997. Understanding the eco-epidemiology of raccoon (Procyon lotor) variant rabies (raccoon rabies) is critical to successful management. Pine (Pinus spp.)-dominated landscapes generally support low relative raccoon densities that may inhibit rabies spread. However, confounding landscape features, such as wetlands and human development, represent potentially elevated risk corridors for rabies spread, possibly imperiling enhanced rabies surveillance and ORV planning. Raccoon habitat suitability in pine-dominated landscapes in Massachusetts, Florida, and Alabama was modeled by the maximum entropy (Maxent) procedure using raccoon presence, and landscape and environmental data. Replicated (n = 100/state) bootstrapped Maxent models based on raccoon sampling locations from 2012–2014 indicated that soil type was the most influential variable in Alabama (permutation importance PI = 38.3), which, based on its relation to landcover type and resource distribution and abundance, was unsurprising. Precipitation (PI = 46.9) and temperature (PI = 52.1) were the most important variables in Massachusetts and Florida, but these possibly spurious results require further investigation. The Alabama Maxent probability surface map was ingested into Circuitscape for conductance visualizations of potential areas of habitat connectivity. Incorporating these and future results into raccoon rabies containment and elimination strategies could result in significant cost-savings for rabies management here and elsewhere

    A sensitive search for predicted methanol maser transitions with the Australia telescope compact array

    Full text link
    We have used theAustralia Telescope Compact Array to search for a number of centimetrewavelengthmethanol transitions which are predicted to show weak maser emission towards star formation regions. Sensitive, high spatial, and spectral resolution observations towards four high-mass star formation regions which show emission in a large number of class II methanol maser transitions did not result in any detections. From these observations, we are able to place an upper limit of 1 300 K on the brightness temperature of any emission from the 31A+-31A-, 17-2-18-3 E (vt = 1), 124-133 A-, 124-133 A+, and 41A+-41A- transitions of methanol in these sources on angular scales of 2 arcsec. This upper limit is consistent with current models for class II methanol masers in high-mass star formation regions and better constraints than those provided here will likely require observations with next-generation radio telescopes. © Astronomical Society of Australia 2016

    Land cover classification using multi-temporal MERIS vegetation indices

    Get PDF
    The spectral, spatial, and temporal resolutions of Envisat's Medium Resolution Imaging Spectrometer (MERIS) data are attractive for regional- to global-scale land cover mapping. Moreover, two novel and operational vegetation indices derived from MERIS data have considerable potential as discriminating variables in land cover classification. Here, the potential of these two vegetation indices (the MERIS global vegetation index (MGVI), MERIS terrestrial chlorophyll index (MTCI)) was evaluated for mapping eleven broad land cover classes in Wisconsin. Data acquired in the high and low chlorophyll seasons were used to increase inter-class separability. The two vegetation indices provided a higher degree of inter-class separability than data acquired in many of the individual MERIS spectral wavebands. The most accurate landcover map (73.2%) was derived from a classification of vegetation index-derived data with a support vector machine (SVM), and was more accurate than the corresponding map derived from a classification using the data acquired in the original spectral wavebands
    corecore