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The spectral, spatial, and temporal resolutions of Envisat’s Medium Resolution

Imaging Spectrometer (MERIS) data are attractive for regional- to global-scale

land cover mapping. Moreover, two novel and operational vegetation indices

derived from MERIS data have considerable potential as discriminating

variables in land cover classification. Here, the potential of these two vegetation

indices (the MERIS global vegetation index (MGVI), MERIS terrestrial

chlorophyll index (MTCI)) was evaluated for mapping eleven broad land cover

classes in Wisconsin. Data acquired in the high and low chlorophyll seasons were

used to increase inter-class separability. The two vegetation indices provided a

higher degree of inter-class separability than data acquired in many of the

individual MERIS spectral wavebands. The most accurate landcover map

(73.2%) was derived from a classification of vegetation index-derived data with a

support vector machine (SVM), and was 4.4% more accurate than the

corresponding map derived from a classification using the data acquired in the

original spectral wavebands.

1. Introduction

Land cover maps provide key environmental information needed for environmental

understanding, resource management, and policy development at a range of spatial

scales (Cihlar 2000, Latifovic et al. 2004, Treitz and Rogan 2004). Remote sensing

has considerable potential for the provision of land cover maps but the accuracy of

the maps derived is often viewed as insufficient (Wilkinson 1996, Foody 2002).

There are many factors responsible for this situation, including the nature of classes

being studied, the properties of the sensing system used to acquire the imagery, and

also the techniques used to extract thematic information from the imagery (Steele

2000, Foody 2002, Pal and Mather 2003). Despite considerable recent research into

land cover classification, the accuracy with which land cover has been mapped from

remotely sensed data often remains low, and there does not appear to be an upward

trend in accuracy over time. Wilkinson (2005) highlighted the need for further

advances if the full potential of remote sensing for land cover is to be realized.
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The growing need for land cover information has driven developments in sensing

technologies, as well as advances in methods to extract information from remotely

sensed data. Research over the past decade has, for example, focused on ways to

increase the accuracy of thematic information extraction from remotely sensed data

(Benediktsson et al. 1990, Friedl and Brodley 1997, Foody and Mathur 2004), often

making use of contemporary sensing systems with enhanced spectral, spatial, and

radiometric properties. Much research has also addressed the potential benefits to

be derived from the inclusion of additional information such as (1) image texture,

context, and ancillary information (e.g. soil, topography), and (2) waveband

transformations such as vegetation indices (Beneditti et al. 1994, ;Krishnaswamy

et al. 2004, Li and Moon 2004, Mather 2004) into the classification. This article

focuses on the use of vegetation indices as discriminating variables for land cover

classification.

Vegetation indices, empirical formula derived using reflected radiance in two or

more wavelengths, have been used widely to indicate and estimate biophysical

variables. Vegetation indices may be used also to enhance the spectral contrast

between vegetated and non-vegetated land cover classes, and so may be useful as

discriminating variables in classification applications. The most commonly used

vegetation indices are the normalized difference vegetation index (NDVI) and

simple ratio (SR) (Gaston et al. 1994, Myneni et al. 1995, Lobo et al. 1997).

However, vegetation indices have been developed that are relatively insensitive to

confounding variables such as soil background, sun-sensor angular geometry, and

the atmosphere. For example, widely used indices include the perpendicular

vegetation index (PVI) (Richardson and Wiegand 1977), weighted distance

vegetation index (WDVI) (Clevers 1988), soil adjusted vegetation index (SAVI)

(Huete 1988), transformed soil adjusted vegetation index (TSAVI) (Baret and Guyot

1991), atmospherically resistant vegetation index (ARVI) (Kaufman and Tanré

1992), and the global environmental monitoring index (GEMI) (Pinty and

Verstraete 1992). Although often used to indicate and estimate biophysical variables

(Tucker et al. 1985), vegetation indices have also often been used as discriminating

variables in image classification (e.g. Justice et al. 1989, Lloyd 1990, Hill and Foody

1994, Beneditti et al. 1994, Achard and Estreguil 1995).

The NDVI is the most widely used of the vegetation indices for classification

applications (Lloyd 1990, Myneni et al. 1995, Li and Moon 2004). For example,

using NDVI data, Running et al. (1995) present a decision tree classification based

on the permanence of above-ground biomass, longevity of leaves, and leaf type.

Critically, the use of a vegetation index can yield a classification that is more

accurate than one derived from the data used in its calculation (Anderson et al.

1993, Nemani et al. 1993, Hirata et al. 2001). This feature, together with the ready

availability of NDVI data in major archives (e.g. Smith et al. 1997), has led to the

NDVI being used widely as a discriminating variable in image classification. Indeed,

the NDVI derived from a variety of different sensors has been used to classify

vegetated terrain at scales ranging from the local to global (Benedetti et al. 1994,

Lobo et al. 1997, Hansen et al. 2000, Han et al. 2004). The NDVI is, for example, at

the core of major global land cover mapping programmes (e.g. Loveland et al.

2000). Typically, the data used are a time series of NDVI images that provide a

measure of phenological variability in space and time, which can facilitate inter-class

discrimination (Tucker et al. 1985, DeFries and Townsend 1994). <However, the use

of the NDVI to classify vegetation has some major limitations, such as a relative
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insensitivity to canopy structural variables and background reflectance.

Additionally, the NDVI is insensitive to very high and very low chlorophyll

content. Chlorophyll is a key biochemical variable, and plant chlorophyll content

varies with vegetation type (Peterson et al. 1988, Smith and Curran 1992, Clark

1995, Curran et al. 2001). For example, deciduous trees have higher chlorophyll

content than coniferous trees. Not only is the chlorophyll content different for

dissimilar vegetation types at a particular time, but also the variation in chlorophyll

content for a growing season depends on vegetation type. This indicates that

knowledge of chlorophyll content in space and time may enhance class separability

and the production of accurate land cover maps.

There are many methods available for the estimation of leaf chlorophyll content

(Mariotti et al. 1996, Datt 1998, Gitelson and Merzlyak 1998) and canopies

(Peterson et al. 1988, Curran et al. 1995, Pinar and Curran 1996, Daughtry et al.

2000, O’Neill et al. 2002) using remote sensing. These methods are based on the use

of data acquired in narrow spectral wavebands in the red and near-infrared (NIR)

region. The availability of such narrow bandwidth data has increased recently with

the launch of spaceborne spectrometers (Rast et al. 1999, Curran and Steele 2005).

Spaceborne spectrometers provide data over a range of spatial and temporal scales

that can be used to map vegetation distribution (Huete et al. 2002), estimate

vegetation amount (Gobron et al. 2003), and monitor the vegetation condition

(Dash and Curran 2004).

The Medium Resolution Imaging Spectrometer (MERIS), part of the European

Space Agency’s (ESA) Envisat mission, operates in 15 programmable wavebands

(2.5–20 nm wide) in the 390–1040 nm region, with spatial resolutions of 300 m and

1200 m (figure 1). Because of its high radiometric resolution, relatively fine spectral

resolution, moderate spatial resolution, and three-day repeat cycle, MERIS

potentially is a valuable sensor for the measurement and monitoring of terrestrial
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Figure 1. Location of the MERIS wavebands overlain on a model vegetation spectrum.
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environments at regional to global scales (Rast et al. 1999, Verstraete et al. 1999,

Curran and Steele 2005).

MERIS primary data products include calibrated instantaneous radiance

estimates in each waveband at both full (300 m) and reduced (1200 m) spatial

resolution. The secondary products include a number of geophysical and

biophysical products over land, ocean, and atmosphere. MERIS data are available

at three levels of processing. Level 1 data are top of the atmosphere radiances, level 2

data are atmospherically corrected top-of-canopy reflectances, as well as geophy-

sical and biophysical products (e.g. MERIS global vegetation index (MGVI);

Gobron et al. 1999), and level 3 data are derived products (e.g. mosaic of fraction of

photosynthetically absorbed radiation (fPAR)). Of relevance here is that the level 2

MERIS data products include two vegetation indices: the MGVI and the MERIS

terrestrial chlorophyll index (MTCI; Dash and Curran 2004).

The MGVI uses information from the blue, red, and near-infrared (NIR) part of

the spectrum (Gobron et al. 1999). The information in blue wavelengths (MERIS

waveband 2) is used to mask out pixels contaminated by atmospheric effects,

with the index calculated for all other pixels. The normalized red (MERIS

waveband 8) and NIR (MERIS waveband 13) wavebands are used to derive

information on vegetation amount and structure. The magnitude of the MGVI has a

near linear positive relationship with fPAR, which, in turn, is related positively to

LAI.

The MTCI is derived from data in red and NIR wavebands centred at 681.25 nm,

708.75 nm, and 753.75 nm (corresponding to wavebands 8, 9, and 10 of the MERIS

standard band setting, figure 1), and produce a value that is related to the relative

position of the red edge (Dash and Curran 2004). In comparison with the red edge

position, the MTCI is simpler to calculate; more sensitive to high values of

chlorophyll content and less sensitive to spatial resolution and atmospheric effects.

The aim of this article is to evaluate the potential of MERIS data, and especially

the two vegetation index products (MERIS VI dataset), for land cover mapping. A

key feature of the work is to determine if vegetation indices could be used to map

land cover at least as accurately as a set of individual MERIS bands (MERIS

spectral dataset). This would be advantageous, as it would reduce the number of

discriminating variables in the analysis (which should reduce the size of the training

set needed, and so the cost of undertaking a classification), as well as allowing

researchers to exploit readily available data products.

2. MERIS vegetation indices

The study was based on the premise that the relationship between chlorophyll

concentration and vegetation type varies with time. For example, vegetation with a

large temporal range in chlorophyll concentration includes broadleaf forests and

crops, while shrubs and pasture, in most cases, have a low chlorophyll range. The

range in chlorophyll concentration over a growing season is expected to vary

between different land cover classes and is associated with the phenology of the

vegetation types. For example, deciduous trees have a higher variation in

chlorophyll concentration than coniferous trees. This variation in chlorophyll

concentration may be influenced also by geographical location. The range in

chlorophyll concentration is, therefore, a function of time, space, and land cover

type.

In
te

rn
a
ti

o
n

a
l

J
o

u
rn

a
l

o
f

R
e
m

o
te

S
e
n

s
in

g
re

s
8
8
8
0
7
.3

d
8
/6

/0
6

1
6
:0

7
:5

9
T

h
e

C
h
a
rl
e
s
w

o
rt

h
G

ro
u
p
,

W
a
k
e
fi
e
ld

+
4
4
(0

)1
9
2
4

3
6
9
5
9
8

-
R

e
v

7
.5

1
n
/W

(J
a
n

2
0

2
0
0
3
)

1
7
8
3
7
4

4

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

30

35

40

45



The MGVI is related to biophysical variables such as LAI and is calculated from:

MGVI~g0 rR681, rR865ð Þ ð1Þ

where g0 is the generic function (Verstraete and Pinty 1996), and rR681 and rR865

are rectified bidirectional reflectance values in MERIS bands centred at 681.25 nm

and 865 nm (Gobron et al. 1999).

The MTCI is related to biochemical variables such as chlorophyll content and is

the ratio of the difference in reflectance between wavebands 10 and 9 and the

difference in reflectance between wavebands 9 and 8 of the MERIS standard band

setting

MTCI~
R753:75{R708:75

R708:75{R681:25
ð2Þ

where the subscripts indicate either waveband number or the centre wavelength of

the waveband in nm. The MTCI is positively related to the total chlorophyll content

of vegetation, which in turn is a product of the chlorophyll concentration (amount

of chlorophyll per unit area) and LAI. Consequently, the ratio MTCI/MGVI is
approximately equal to chlorophyll concentration

Chlorophyll concentration&
MTCI

MGVI
ð3Þ

The temporal variation in chlorophyll concentration of vegetation may provide a

valuable discriminating variable for mapping land cover. This variation in

chlorophyll concentration can be estimated =by subtracting chlorophyll concentra-

tion estimated in the low chlorophyll season from that estimated in the high

chlorophyll season. The ideal dates of MERIS data acquisition for land cover

classification should, therefore, be drawn from both the high and low chlorophyll

seasons.

3. Data and methods

The study area comprised part of the state of Wisconsin, USA, where imagery

acquired in late July and mid-September would represent high and low chlorophyll

seasons, respectively. However, suitable cloud-free MERIS data were unavailable

and so cloud-free MERIS data (spatial resolution of 300 m) acquired on 18 August
2003 and 20 September 2003 were used to represent a period late in the high and

early in the low chlorophyll season, respectively (figure 2). Although not ideal dates,

the first lies near the end of the normal growing season, while the second

corresponds to the typical date of the first frost in the fall for the study area. Thus,

although not widely separated in time, the two sets of imagery provided

representations of the land cover at times when the chlorophyll condition would

be expected to differ markedly.

The reference land cover dataset used in this work was the Wisconsin Initiative for

Statewide Cooperation on Landscape Analysis and Data (WISCLAND) land cover

map (WiDNR 1998). The WISCLAND land cover map was derived from the

classification of Landsat Thematic Mapper (TM) data acquired during the mid

1990s (Reese et al. 2002). Although it is based on data acquired nearly ten years

prior to that of the MERIS data used in this study, the land cover in the study area
was relatively stable in this period, except for gradual expansion of urban areas,

which was addressed by excluding such regions from the analysis when extracting
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Figure 2. Vegetation index based data and test site location. (a) MGVI in August; (b) MTCI
in August; (c) MGVI in September; (d) MTCI in September; (e) chlorophyll range; and (f)
location of test site in the State of Wisconsin.
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data from the imagery. Additionally, the WISCLAND dataset is the finest spatial

resolution, most accurate and most categorically detailed land cover dataset

available for the state (Lillesand et al. 1998, Reese et al. 2002). The WISCLAND

dataset comprised seven classes at Anderson level I and 24 classes at Anderson level

II/III. The WISCLAND data had an overall accuracy of 94% for Anderson level I

upland classes (developed land, cultivated land, grassland, woody land, bare land,

tundra, and snow/ice), 77% for level II/III upland classes, and 84% for level II/III

wetland classes (WiNDR 1998). For this study, the Anderson level I set of classes

was deemed too generalized, while the Anderson level II/III classes too detailed for

mapping from MERIS data with a 300 m spatial resolution. The WISCLAND

detailed land cover classes were, therefore, merged to produce a generalized land

cover map depicting a set of land cover classes that potentially could be

classified using MERIS data (table 1) and represent all major vegetation types in

the state.

Given that the ground data had a fine spatial resolution (30 m) relative to the

MERIS data to be classified, and the proportion of mixed pixels in an image is

related positively to pixel size, action was taken to ensure that only pure MERIS

pixels were selected for analysis. Training and testing data were, therefore, extracted

from large homogeneous sites for each of the classes to ensure pixel purity. In total,

962 MERIS pixels were extracted for further analysis, with the relative abundance of

the classes within the test site reflected in the number of pixels derived for each class.

The data for each class were divided randomly into equally sized training and testing

sets.

Classifications were undertaken using the data acquired in the MERIS spectral

wavebands directly and the MERIS vegetation indices. Due to a processing

problem, ESA was unable to provide data in MERIS wavebands 11 and 15, but data

acquired in all other wavebands were available and included in the analyses. For the

classifications using the MERIS spectral dataset, a feature selection analysis was

used to reduce the size of the dataset by removing potentially uninformative

wavebands. This feature selection was based on a stepwise discriminant analysis

applied to the training dataset. Wilks’ lambda was used here to select the most

discriminating set of the 13 MERIS spectral wavebands for use in the classification.
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Table 1. Land cover classes and number of pixels extracted from each class for analyses. Note
that the Agricultural land I category contains vegetation types present in both August and
September (e.g. corn) and Agricultural land II contains classes that had been harvested by

September (e.g. forage crops).

Land cover class Number of pixels

Urban 94
Agricultural land-I 90
Agricultural land-II 70
Grassland 98
Coniferous forest 104
Mixed forest 92
Deciduous forest 70
Water 60
Wetland 118
Forested wetland 102
Shrubland 64
Total 962
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Wilks’ lambda is used to test whether there are differences between the means of

identical groups of subjects on a combination of dependent variables. The Wilks’

lambda coefficient was inversely related to the discriminatory power of the variables

input to the analysis. For comparative purposes, the NDVI was also calculated for

both image datasets and the separability of the classes in the resulting products

assessed with Wilks’ lambda. The NDVI was not, however, included in the

classification as attention was focused on the potential of the MERIS vegetation

index products as discriminating variables.

For the classification using the MERIS VI dataset, the chlorophyll range, MTCI

in the high chlorophyll and low chlorophyll season and MGVI in the high

chlorophyll and low chlorophyll season, were computed and used as discriminatory

variables (figure 2). The chlorophyll range was defined as the difference between

the MTCI/MGVI ratio estimates derived for August and September, respectively,

from

CA{S~
MTCIA

MGVIA
{

MTCIS

MGVIS
ð4Þ

where CA–S is the chlorophyll range and the subscripts identify the month of data

acquisition.

An initial set of classifications was undertaken using a discriminant analysis. In

these, each case was allocated to the class with which it had the highest posterior

probability of membership. Since such probabilistic classification analyses may not

always be appropriate, a further set of classifications was undertaken with a support

vector machine (SVM). SVMs have attracted the attention of the remote sensing

community for supervised image classification applications (Brown et al. 1999,

Huang et al. 2002, Halldorsson et al. 2003). The mathematical background to SVM

classification is discussed extensively in the literature (e.g. Huang et al. 2002, Foody

and Mathur 2004). A key attraction of SVM for image classification is that

comparative studies have shown that SVM may classify remotely sensed data more

accurately than other more commonly used classifiers (Huang et al. 2002, Pal and

Mather 2003, Foody and Mathur 2004). Two parameters, one controlling the

balance between the desire to maximize the margin between the classes against the

term that penalizes cases on the wrong side of the classifier’s decision boundary (C)

and the other to control the width of the Gaussian kernel used (c), need to be

defined for a SVM classification. Here, a range of parameter settings were

evaluated and the set that yielded the highest classification accuracy reported. This

approach was adopted in order to indicate the greatest potential accuracy

achievable.

For comparative purposes, the same training and testing sites were used in the two

sets of classifications (MERIS spectral dataset and MERIS VI dataset).

Classifications derived using both datasets were compared to evaluate the relative

value of the two information sources for mapping the land cover of the study area.

In all cases, classification accuracy was expressed as the percentage of testing cases

correctly classified (overall accuracy). The statistical significance of differences in

the accuracy of the classifications derived was assessed using a McNemar test,

without correction for continuity, for related samples (Foody 2004). All testing was

undertaken at the 95% level of confidence. Interpretation of the test results is based

on the Z statistic, with, for example, a value Z>|1.96| indicating a statistically

significant difference in accuracy at the 95% confidence level.
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4. Results and discussion

The discriminating ability of the MERIS spectral dataset and MERIS VI dataset

was indicated by the magnitude of the Wilks’ lambda coefficient derived from the

discriminant analyses (tables 2–4). It was evident for both the August and September

datasets that a vegetation index provided the greatest discriminating information.

Moreover, in relation to the MERIS spectral dataset, discriminating ability

appeared to be related positively to wavelength. The rank order of the

discriminating variables and level of spectral separability of the classes, however,

appeared to vary with time. For example, data acquired in August appeared to

provide a greater degree of discrimination than those acquired in September. In

addition, while the NDVI was the most discriminating variable in August, the
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Table 2. Wilks’ lambda coefficients derived from MERIS data acquired in August.

Variable Wilks’ lambda

NDVI .106
B13 .155
B12 .156
B10 .160
MGVI .169
MTCI .169
B14 .173
Chlorophyll concentration .254
B9 .274
B5 .350
B6 .365
B8 .372
B7 .373
B4 .423
B3 .446
B2 .468
B1 .488

Table 3. Wilks’ lambda coefficients derived from MERIS data acquired in September.

Variable Wilks’ lambda

MTCI .166
B14 .235
B13 .240
B12 .262
B10 .267
NDVI .280
MGVI .348
B9 .437
Chlorophyll concentration .493
B5 .568
B6 .585
B7 .596
B8 .596
B4 .630
B3 .642
B2 .649
B1 .654
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MTCI provided the greatest degree of discrimination in September. With the data

for the two months combined, the vegetation indices, especially the MTCI, were

amongst the most discriminating variables (table 4).

Using data acquired for each month individually and combined, land cover maps

of the study area were produced using a stepwise discriminant analysis. For the

August dataset, nine spectral wavebands were selected from the spectral dataset for

inclusion in the classification and used to derive a map with an estimated accuracy

of 66.7% (table 5). Only five spectral wavebands were selected from the

corresponding analysis of the data acquired in September and, as expected from

the separability analyses, the derived land cover map was less accurate than that

derived from the data acquired in August, with an accuracy of 55.9% (table 6). For

all classes except grassland, classification accuracy was lower in the September than

in the August dataset. Combining the MERIS spectral dataset acquired in August

and September resulted in an increase in class separability, and hence map accuracy.
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Table 4. Wilks’ lambda coefficients derived from the combined August and September
MERIS datasets.

Variable Wilks’ lambda

NDVI – August .106
B13 – August .155
B12 – August .156
B10 – August .160
MTCI – September .166
MGVI – August .169
MTCI – August .169
B14 – August .173
B14 – September .235
B13 – September .240
Chlorophyll concentration – August .254
B12 – September .262
B10 – September .267
B9 – August .274
NDVI – September .280
MGVI – September .348
B5 – August .350
B6 – August .365
B8 – August .372
B7 – August .373
B4 – August .423
B9 – September .437
B3 – August .446
B2 – August .468
B1 – August .488
Chlorophyll concentration – September .493
Chlorophyll range .521
B5 – September .568
B6 – September .585
B7 – September .596
B8 – September .596
B4 – September .630
B3 – September .642
B2 – September .649
B1 – September .654
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With the eleven selected spectral bands, the discriminant analysis classified the land

cover study area to an accuracy of 69.0% (table 7).

Using the set of wavebands selected in the discriminant analyses, the

classifications were repeated using the SVM. The SVM was able to classify the

data for each month more accurately than was possible with discriminant analysis,

with accuracies of 67.6% and 61.3% derived for the classification of the data

acquired in August and September, respectively (tables 8 and 9). The main difference

was in relation to the September dataset, and most notably the deciduous forest

class. The classification derived from the combined use of the August and September

datasets was, however, of comparable accuracy to that derived from the

corresponding discriminant analysis (table 10).

The results of the discriminant analysis indicated an ability to classify land cover

to a moderate level of accuracy. However, since the size of the training set required

is typically a function of the number of discriminating variables, the provision of the

data acquired in all thirteen available wavebands as discriminating variables may

necessitate the use of a large training set. The potential of the MERIS VI dataset for

classification, which may allow a reduction in the size of the training set required,

was assessed through classifications by discriminant analysis and SVM.

Discriminant analysis yielded a classification with an overall accuracy of 67.2%

(table 11), marginally, but insignificantly (Z520.384), different from the compar-

able classification based on the MERIS spectral dataset (table 7). The SVM

classification was significantly more accurate than that derived from the

discriminant analysis (Z52.36), with an overall accuracy of 73.2% (table 12). In

general, the accuracy of each class from the producer’s perspective was higher in the

SVM classification, except for three classes for which there were very small decreases

in accuracy associated with no more than four pixels. Critically, for classification by

SVM, the use of the MERIS VI dataset rather than the MERIS spectral dataset

resulted in a 4.4% increase in accuracy, although the difference was (marginally)

insignificant (Z51.86). The MERIS VI dataset, therefore, appears able to provide at

least a comparable, if not increased, ability to discriminate the land cover classes

relative to that associated with the MERIS spectral dataset, and have great potential

for use in land cover classification. It is possible that data acquired at different dates,

especially in the high chlorophyll season, may provide further discrimination and

increase in classification accuracy.

5. Conclusions

The study highlighted the potential of MERIS data, and especially the MERIS VI

dataset, for use as discriminating variables in land cover classification. The ability to

separate eleven broad land cover classes in Wisconsin using MERIS data acquired

on two dates was assessed. The MERIS VI dataset provided a high degree of inter-

class separability, more so than many of the spectral wavebands. Separability and

classification accuracy were also observed to vary between dates, being higher with

data acquired in August rather than September. Using together the data acquired in

each month resulted in an increase in classification accuracy. It is possible that the

use of data acquired earlier in the growing season may further enhance class

separability, and this is an issue that could be addressed in future research.

The highest accuracy was obtained using the MERIS VI dataset with a SVM,

yielding an accuracy of 73.2%. MERIS vegetation index data are now readily

accessible from ESA as a fine spatial resolution (300 m) level 2 product with a
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potential for reducing both volume of data and size of training sets used in land

cover classification. It is, therefore, anticipated that MERIS vegetation index data

will be used increasingly for mapping land cover at regional- to global-scale.
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RAST, M., BÉZY, J.L. and BRUZZI, S., 1999, The ESA medium resolution imaging

spectrometer MERIS – a review of the instrument and its mission. International

Journal of Remote Sensing, 20, pp. 1681–1702.

REESE, H.M., LILLESAND, T.M., NAGEL, D.E., STEWART, J.S., GOLDMANN, R.A.,

SIMMONS, T.E., CHIPMAN, J.W. and TESSAR, P.A., 2002, Statewide land cover

In
te

rn
a
ti

o
n

a
l

J
o

u
rn

a
l

o
f

R
e
m

o
te

S
e
n

s
in

g
re

s
8
8
8
0
7
.3

d
8
/6

/0
6

1
6
:0

8
:1

9
T

h
e

C
h
a
rl
e
s
w

o
rt

h
G

ro
u
p
,

W
a
k
e
fi
e
ld

+
4
4
(0

)1
9
2
4

3
6
9
5
9
8

-
R

e
v

7
.5

1
n
/W

(J
a
n

2
0

2
0
0
3
)

1
7
8
3
7
4

22

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

30

35

40

45



derived from multiseasonal Landsat TM data – a retrospective of the WISCLAND

project. Remote Sensing of Environment, 82, pp. 224–237.

RICHARDSON, A.L. and WIEGAND, C.L., 1977, Distinguishing vegetation from soil

background information. Photogrammetric Engineering and Remote Sensing, 43, pp.

1541–1552.

RUNNING, S.W., LOVELAND, T.R., PIERCE, L.L., NEMANI, R. and HUNT, E.R., 1995, A

remote-sensing based vegetation classification logic for global land-cover analysis.

Remote Sensing of Environment, 51, pp. 39–48.

SMITH, G.M. and CURRAN, P.J., 1992, Exploring the remote sensing of foliar biochemical

concentration with AVIRIS data. In AVIRIS Airborne Geoscience Workshop

Proceedings, Pasadena, California, pp. 50–52 (Pasadena: Jet Propulsion Laboratory).

SMITH, P.M., KALLURI, S.N.V., PRINCE, S.D. and DEFRIES, R., 1997, The NOAA/NASA

pathfinder AVHRR 8-km land data set. Photogrammetric Engineering and Remote

Sensing, 63, pp. 12–40.

STEELE, B.M., 2000, Combining multiple classifiers: an application using spatial and remotely

sensed information for land cover type mapping. Remote Sensing of Environment, 74,

pp. 545–556.

TREITZ, P. and ROGAN, J., 2004, Remote sensing for mapping and monitoring land-cover and

land-use change. Progress in Planning, 61, pp. 267–279.

TUCKER, C.J., TOWNSHEND, J.R.G. and GOFF, T.E., 1985, African land cover classification

using satellite data. Science, 227, pp. 369–375.

VERSTRAETE, M.M. and PINTY, B., 1996, Designing optimal spectral indexes for remote

sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 34, pp.

1254–1265.

VERSTRAETE, M.M., PINTY, B. and CURRAN, P.J., 1999, MERIS potential for land

application. International Journal of Remote Sensing, 20, pp. 1747–1756.

WiDNR >, 1998, User’s Guide to WISCLAND Land Cover Data. Wisconsin Department of

Natural Resources Report. Available online at: http://www.dnr.state.wi.us/maps/gis/

datalandcover.html (accessed XX month year).

WILKINSON, G.G., 1996, Classification algorithms – where next? In Soft Computing in Remote

Sensing Data Analysis, E. Binaghi, P.A. Brivio and A. Rampini (Eds), pp. 93–99

(Singapore: World Scientific).

WILKINSON, G.G., 2005, Results and implications of a study of fifteen years of satellite image

classification experiments. IEEE Transactions on Geoscience and Remote Sensing, 43,

pp. 433–440.

In
te

rn
a
ti

o
n

a
l

J
o

u
rn

a
l

o
f

R
e
m

o
te

S
e
n

s
in

g
re

s
8
8
8
0
7
.3

d
8
/6

/0
6

1
6
:0

8
:1

9
T

h
e

C
h
a
rl
e
s
w

o
rt

h
G

ro
u
p
,

W
a
k
e
fi
e
ld

+
4
4
(0

)1
9
2
4

3
6
9
5
9
8

-
R

e
v

7
.5

1
n
/W

(J
a
n

2
0

2
0
0
3
)

1
7
8
3
7
4

23

0

5

10

15

20

25

30

35

40

45

0

5

10

15

20

25

30

35

40

45


