89 research outputs found

    The genome and transcriptome of Trichormus sp NMC-1: insights into adaptation to extreme environments on the Qinghai-Tibet Plateau

    Get PDF
    The Qinghai-Tibet Plateau (QTP) has the highest biodiversity for an extreme environment worldwide, and provides an ideal natural laboratory to study adaptive evolution. In this study, we generated a draft genome sequence of cyanobacteria Trichormus sp. NMC-1 in the QTP and performed whole transcriptome sequencing under low temperature to investigate the genetic mechanism by which T. sp. NMC-1 adapted to the specific environment. Its genome sequence was 5.9 Mb with a G+C content of 39.2% and encompassed a total of 5362 CDS. A phylogenomic tree indicated that this strain belongs to the Trichormus and Anabaena cluster. Genome comparison between T. sp. NMC-1 and six relatives showed that functionally unknown genes occupied a much higher proportion (28.12%) of the T. sp. NMC-1 genome. In addition, functions of specific, significant positively selected, expanded orthogroups, and differentially expressed genes involved in signal transduction, cell wall/membrane biogenesis, secondary metabolite biosynthesis, and energy production and conversion were analyzed to elucidate specific adaptation traits. Further analyses showed that the CheY-like genes, extracellular polysaccharide and mycosporine-like amino acids might play major roles in adaptation to harsh environments. Our findings indicate that sophisticated genetic mechanisms are involved in cyanobacterial adaptation to the extreme environment of the QTP

    Time domains of hypoxia responses and -omics insights

    Get PDF
    The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research

    The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis

    Get PDF
    Background Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, Cardinalis cardinalis. Results Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species\u27 range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in México. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America. Conclusion We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in C. cardinalis. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously

    The role of historical and contemporary processes on phylogeographic structure and genetic diversity in the Northern Cardinal, Cardinalis cardinalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Earth history events such as climate change are believed to have played a major role in shaping patterns of genetic structure and diversity in species. However, there is a lag between the time of historical events and the collection of present-day samples that are used to infer contemporary population structure. During this lag phase contemporary processes such as dispersal or non-random mating can erase or reinforce population differences generated by historical events. In this study we evaluate the role of both historical and contemporary processes on the phylogeography of a widespread North American songbird, the Northern Cardinal, <it>Cardinalis cardinalis</it>.</p> <p>Results</p> <p>Phylogenetic analysis revealed deep mtDNA structure with six lineages across the species' range. Ecological niche models supported the same geographic breaks revealed by the mtDNA. A paleoecological niche model for the Last Glacial Maximum indicated that cardinals underwent a dramatic range reduction in eastern North America, whereas their ranges were more stable in México. In eastern North America cardinals expanded out of glacial refugia, but we found no signature of decreased genetic diversity in areas colonized after the Last Glacial Maximum. Present-day demographic data suggested that population growth across the expansion cline is positively correlated with latitude. We propose that there was no loss of genetic diversity in areas colonized after the Last Glacial Maximum because recent high-levels of gene flow across the region have homogenized genetic diversity in eastern North America.</p> <p>Conclusion</p> <p>We show that both deep historical events as well as demographic processes that occurred following these events are critical in shaping genetic pattern and diversity in <it>C. cardinalis</it>. The general implication of our results is that patterns of genetic diversity are best understood when information on species history, ecology, and demography are considered simultaneously.</p

    Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide New Insight into the Origins of Amazonian Diversity

    Get PDF
    The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene—or both—have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area

    Caenorhabditis briggsae Recombinant Inbred Line Genotypes Reveal Inter-Strain Incompatibility and the Evolution of Recombination

    Get PDF
    The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes

    Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in highaltitude deer mice

    Get PDF
    Evolutionary adaptation to extreme environments often requires coordinated changes in multiple intersecting physiological pathways, but how such multi-trait adaptation occurs remains unresolved. Transcription factors, which regulate the expression of many genes and can simultaneously alter multiple phenotypes, may be common targets of selection if the benefits of induced changes outweigh the costs of negative pleiotropic effects. We combined complimentary population genetic analyses and physiological experiments in North American deer mice (Peromyscus maniculatus) to examine links between genetic variation in transcription factors that coordinate physiological responses to hypoxia (hypoxia-inducible factors, HIFs) and multiple physiological traits that potentially contribute to high-altitude adaptation. First, we sequenced the exomes of 100 mice sampled from different elevations and discovered that several SNPs in the gene Epas1, which encodes the oxygen sensitive subunit of HIF-2α, exhibited extreme allele frequency differences between highland and lowland populations. Broader geographic sampling confirmed that Epas1 genotype varied predictably with altitude throughout the western US. We then discovered that Epas1 genotype influences heart rate in hypoxia, and the transcriptomic responses to hypoxia (including HIF targets and genes involved in catecholamine signaling) in the heart and adrenal gland. Finally, we used a demographically-informed selection scan to show that Epas1 variants have experienced a history of spatially varying selection, suggesting that differences in cardiovascular function and gene regulation contribute to high-altitude adaptation. Our results suggest a mechanism by which Epas1 may aid long-term survival of high-altitude deer mice and provide general insights into the role that highly pleiotropic transcription factors may play in the process of environmental adaptation

    Assessment of the radiometric quality of TerraSAR-X and COSMO-SkyMed SAR sensors

    Get PDF
    The retrieval of biophysical parameters of soil and vegetation using Synthetic Aperture Radar (SAR) images requires radiometrically well-calibrated sensors. In this paper, the radiometric quality of TerraSAR-X (TSX) and COSMO-SkyMed (CSK) constellation (four satellites: CSK1, CSK2, CSK3, and CSK4) was assessed. The analysis of the X-band SAR signal on a forest stand showed a stable signal (with variation lower than 1 dB) over time for each of the studied sensors but a significant difference was observed between the different X-band SAR sensors. Differences between SAR’s were higher in HH than in HV polarization. TSX and CSK4 showed very similar backscatter signals, with differences in the signal levels of 0.7 dB in HH and 1.2 dB in HV. The CSK3 signal was observed to be lower than those from both TSX and CSK4 of about 1.8 dB and 1.1 dB in HH against 3.1 dB and 1.9 dB in HV, respectively. Moreover, CSK2 and CSK1 which showed similar backscatter signals (within 0.6 dB in HH and 1.4 dB in HV) had signal levels lower than that from TSX of 2.5-3 dB in HH and 4.5-5 dB in HV (for about 29° incidence angle). These results suggest that, if we assume that the studied forest is a stable zone, the calibration constants of some of the studied SAR should be refined. Without additional correction, it is not possible to use jointly the different current X-band SAR for estimating the biophysical parameters of soil or vegetation for example
    corecore