3,106 research outputs found
Excised acoustic black holes: the scattering problem in the time domain
The scattering process of a dynamic perturbation impinging on a draining-tub
model of an acoustic black hole is numerically solved in the time domain.
Analogies with real black holes of General Relativity are explored by using
recently developed mathematical tools involving finite elements methods,
excision techniques, and constrained evolution schemes for strongly hyperbolic
systems. In particular it is shown that superradiant scattering of a
quasi-monochromatic wavepacket can produce strong amplification of the signal,
offering the possibility of a significant extraction of rotational energy at
suitable values of the angular frequency of the vortex and of the central
frequency of the wavepacket. The results show that theoretical tools recently
developed for gravitational waves can be brought to fruition in the study of
other problems in which strong anisotropies are present.Comment: 8 pages, 9 figure
Electrocardiogram of the Mixmaster Universe
The Mixmaster dynamics is revisited in a new light as revealing a series of
transitions in the complex scale invariant scalar invariant of the Weyl
curvature tensor best represented by the speciality index , which
gives a 4-dimensional measure of the evolution of the spacetime independent of
all the 3-dimensional gauge-dependent variables except for the time used to
parametrize it. Its graph versus time characterized by correlated isolated
pulses in its real and imaginary parts corresponding to curvature wall
collisions serves as a sort of electrocardiogram of the Mixmaster universe,
with each such pulse pair arising from a single circuit or ``complex pulse''
around the origin in the complex plane. These pulses in the speciality index
and their limiting points on the real axis seem to invariantly characterize
some of the so called spike solutions in inhomogeneous cosmology and should
play an important role as a gauge invariant lens through which to view current
investigations of inhomogeneous Mixmaster dynamics.Comment: version 3: 20 pages iopart style, 19 eps figure files for 8 latex
figures; added example of a transient true spike to contrast with the
permanent true spike example from the Lim family of true spike solutions;
remarks in introduction and conclusion adjusted and toned down; minor
adjustments to the remaining tex
Xylem plasticity in Pinus pinaster and Quercus ilex growing at sites with different water availability in the Mediterranean region: relations between Intra-Annual Density Fluctuations and environmental conditions.
Fluctuations in climatic conditions during the growing season are recorded in Mediterranean tree-rings and often result in intra-annual density fluctuations (IADFs). Dendroecology and quantitative wood anatomy analyses were used to characterize the relations between the variability of IADF traits and climatic drivers in Pinus pinaster Aiton and Quercus ilex L. growing at sites with different water availability on the Elba island in Central Italy. Our results showed that both species present high xylem plasticity resulting in the formation of L-type IADFs (L-IADFs), consisting of earlywood-like cells in latewood. The occurrence of such IADFs was linked to rain events following periods of summer drought. The formation of L-IADFs in both species increased the hydraulic conductivity late in the growing season, due to their larger lumen area in comparison to "true latewood". The two species expressed greater similarity under arid conditions, as unfavorable climates constrained trait variation. Wood density, measured as the percentage of cell walls over total xylem area, IADF frequency, as well as conduit lumen area and vessel frequency, specifically in the hardwood species, proved to be efficient proxies to encode climate signals recorded in the xylem. The response of these anatomical traits to climatic variations was found to be species- and site-specific
Time-Varying Gravitomagnetism
Time-varying gravitomagnetic fields are considered within the linear
post-Newtonian approach to general relativity. A simple model is developed in
which the gravitomagnetic field of a localized mass-energy current varies
linearly with time. The implications of this temporal variation of the source
for the precession of test gyroscopes and the motion of null rays are briefly
discussed.Comment: 10 pages; v2: slightly expanded version accepted for publication in
Class. Quantum Gra
The Speciality Index as invariant indicator in the BKL Mixmaster Dynamics
The speciality index, which has been mainly used in Numerical Relativity for
studying gravitational waves phenomena as an indicator of the special or
non-special Petrov type character of a spacetime, is applied here in the
context of Mixmaster cosmology, using the Belinski-Khalatnikov-Lifshitz map.
Possible applications for the associated chaotic dynamics are discussed
Superradiance from BEC vortices: a numerical study
The scattering of sound wave perturbations from vortex excitations of
Bose-Einstein condensates(BEC) is investigated by numerical integration of the
associated Klein-Gordon equation. It is found that, at sufficiently high
angular speeds, sound wave-packets can extract a sizeable fraction of the
vortex energy through a mechanism of superradiant scattering. It is conjectured
that this superradiant regime may be detectable in BEC experiments.Comment: 4 pages, 4 figure
Testing the Gaussian Copula Hypothesis for Financial Assets Dependences
Using one of the key property of copulas that they remain invariant under an
arbitrary monotonous change of variable, we investigate the null hypothesis
that the dependence between financial assets can be modeled by the Gaussian
copula. We find that most pairs of currencies and pairs of major stocks are
compatible with the Gaussian copula hypothesis, while this hypothesis can be
rejected for the dependence between pairs of commodities (metals).
Notwithstanding the apparent qualification of the Gaussian copula hypothesis
for most of the currencies and the stocks, a non-Gaussian copula, such as the
Student's copula, cannot be rejected if it has sufficiently many ``degrees of
freedom''. As a consequence, it may be very dangerous to embrace blindly the
Gaussian copula hypothesis, especially when the correlation coefficient between
the pair of asset is too high as the tail dependence neglected by the Gaussian
copula can be as large as 0.6, i.e., three out five extreme events which occur
in unison are missed.Comment: Latex document of 43 pages including 14 eps figure
Enhancing the top signal at Tevatron using Neural Nets
We show that Neural Nets can be useful for top analysis at Tevatron. The main
features of and background events on a mixed sample are projected in
a single output, which controls the efficiency and purity of the
signal.Comment: 11 pages, 6 figures (not included and available from the authors),
Latex, UB-ECM-PF 94/1
Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime
We analyse the concept of active gravitational mass for Reissner-Nordstrom
spacetime in terms of scalar polynomial invariants and the Karlhede
classification. We show that while the Kretschmann scalar does not produce the
expected expression for the active gravitational mass, both scalar polynomial
invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio
On the Number of Synchronizing Colorings of Digraphs
We deal with -out-regular directed multigraphs with loops (called simply
\emph{digraphs}). The edges of such a digraph can be colored by elements of
some fixed -element set in such a way that outgoing edges of every vertex
have different colors. Such a coloring corresponds naturally to an automaton.
The road coloring theorem states that every primitive digraph has a
synchronizing coloring.
In the present paper we study how many synchronizing colorings can exist for
a digraph with vertices. We performed an extensive experimental
investigation of digraphs with small number of vertices. This was done by using
our dedicated algorithm exhaustively enumerating all small digraphs. We also
present a series of digraphs whose fraction of synchronizing colorings is equal
to , for every and the number of vertices large enough.
On the basis of our results we state several conjectures and open problems.
In particular, we conjecture that is the smallest possible fraction of
synchronizing colorings, except for a single exceptional example on 6 vertices
for .Comment: CIAA 2015. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1
- …
