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Abstract 

Evidence evaluation is a crucial process in many human activities, spanning from medical diagnosis 

to impression formation. The present experiments investigated which, if any, normative model best 

conforms to people’s intuition about the value of the obtained evidence. Psychologists, 

epistemologists, and philosophers of science have proposed several models to account for people’s 

intuition about the utility of the obtained evidence with respect either to a focal hypothesis or to a 

constellation of hypotheses. We pitted against each other the so called optimal-experimental-design 

models (i.e., Bayesian diagnosticity, log10 diagnosticity, information gain, Kullback-Leibler 

distance, probability gain, and impact) and measures L and Z to compare their ability to describe 

humans’ intuition about the value of the obtained evidence. Participants received words-and-

numbers scenarios concerning two hypotheses and binary features. They were asked to evaluate the 

utility of “yes” and “no” answers to questions about some features possessed in different 

proportions (i.e., the likelihoods) by two types of extraterrestrial creatures (corresponding to two 

mutually exclusive and exhaustive hypotheses). Participants evaluated either how an answer was 

helpful or how an answer decreased/increased their beliefs with respect either to a single hypothesis 

or to both hypotheses. We fitted mixed-effects models and we used the Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC) values to compare the competing models of the 

value of the obtained evidence. Overall, the experiments showed that measure Z was the best-fitting 

model of participants’ judgments of the value of obtained answers. We discussed the implications 

for the human hypothesis-evaluation process. 

 

Keywords: optimal-experimental-design models, measure L, measure Z, evidence evaluation, 

hypothesis testing. 
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 Evidence Evaluation: Measure Z Corresponds to Human Utility Judgments Better than Measure L 

and Optimal-Experimental-Design Models 

 People are continually called upon to evaluate available information and to use it to 

determine which hypothesis under consideration is more appropriate. The evaluation of incoming 

information to confirm or revise prior beliefs is a ubiquitous phenomenon, that spans from the 

scrutiny of patients’ symptoms when making a diagnosis (e.g., McKenzie, 2004) to interpreting 

information about an individual to infer her/his personality characteristics (e.g., Evett, Devine, Hirt, 

& Price, 1994). For example, a person might ask of a new acquaintance: “Do you often organize 

parties?” to learn about her/his extroversion. The target of the query might answer “yes, I do,” and 

this response would convey a relatively different amount of information about her/his extroversion 

compared with the answer “no, I do not.” In particular, the “yes” answer to the above question is 

relatively more diagnostic of the target’s extroversion (a person who often organize parties is most 

likely extroverted) compared with the diagnosticity of the “no” answer regarding the target’s 

introversion because a person who does not often organize parties might still be extroverted (e.g., 

Brambilla, Rusconi, Sacchi, & Cherubini, 2011, Study 2; Cameron & Trope, 2004; Cherubini, 

Rusconi, Russo, Di Bari, & Sacchi, 2010; Rusconi & McKenzie, in press; Rusconi, Sacchi, 

Toscano, & Cherubini, 2012; Sacchi, Rusconi, Bonomi, & Cherubini, in press; Sacchi, Rusconi, 

Russo, Bettiga, & Cherubini, 2012; Trope & Liberman, 1996; Trope & Thompson, 1997). 

Therefore, the tester should revise her/his prior confidence about the target’s extroversion 

differently depending on whether she/he receives a “yes” or a “no” answer. A fair evaluation of the 

answers to a question (experiment results or test outcomes) is necessary to accurately revise initial 

beliefs with respect to a single hypothesis or to multiple hypotheses (Rusconi & McKenzie, in 

press; Slowiaczek, Klayman, Sherman, & Skov, 1992) and, eventually, for effective decision 

making. The present contribution investigated which, if any, of the different normative theories 
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advanced by statisticians, epistemologists, philosophers of science, and psychologists best described 

human intuition about the value of obtained evidence.  

There is a large Bayesian reasoning literature on how people evaluate evidence to make 

judgments (e.g., Beach, 1968; Cherubini, Rusconi, Russo, & Crippa, 2013; Cosmides & Tooby, 

1996; Fischhoff & Beyth-Marom, 1983; Gigerenzer & Hoffrage, 1995; Hammerton, 1973; 

McKenzie, 1994; Rusconi, Crippa, Russo, & Cherubini, 2012; Rusconi, Marelli, Russo, D’Addario, 

& Cherubini, 2013; Rusconi & McKenzie, in press; Slovic & Lichtenstein, 1971; Villejoubert & 

Mandel, 2002). The issue of whether people’s intuitions about the value of obtained evidence align 

with theoretically optimal models has been the object of recent studies that noted the theoretical and 

empirical validity of two norms, namely, measures L and Z (e.g., Crupi, Tentori, & Gonzalez, 2007; 

Fitelson, 2001, 2006; Mastropasqua, Crupi, & Tentori, 2010; Tentori, Crupi, Bonini, & Osherson, 

2007). Both norms quantify the changes in beliefs, as opposed to measures of the final, changed 

beliefs. However, it still remains to be clarified whether one of these two models should be 

preferred over the other in terms of descriptive adequacy. Indeed, although Crupi et al. (2007) found 

that Z was a slightly better predictor than L, Mastropasqua et al. (2010) found a reversed pattern 

whereby L performed slightly better than Z. 

Furthermore, different normative standards, often called optimal-experimental-design 

(OED) models, have been proposed as models of human intuition about the value of information 

(e.g., Meder & Nelson, 2012; Nelson, 2005, 2008; Nelson, McKenzie, Cottrell, & Sejnowski, 

2010). However, OED models have been investigated only with respect to their adequacy in 

describing human information gathering (e.g., Meder & Nelson, 2012; Nelson, 2005, 2008; Nelson 

et al., 2010). Therefore, further empirical investigation is needed to examine their relative 

descriptive power compared with measures L and Z as well as their absolute ability to capture 

human intuition in evidence evaluation, for example, when physicians scrutinize test outcomes, 
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when scientists interpret experiment results or, more generally, when one receives a “yes” or a “no” 

answer to a question.  

Finally, an open question in the psychological literature on normative theories of evidence 

utility concerns whether a model of utility that yields negative values is preferable to a non-negative 

model or vice versa (e.g., Evans & Over, 1996; Nelson, 2008). Indeed, some metrics provide 

negative values for evidence utility even when the new evidence is informative (e.g., Evans & Over, 

1996; Nelson, 2008). Some authors have argued that this property leads to counterintuitive 

predictions (e.g., Evans & Over, 1996; Nelson, 2008). The present experiments addressed these 

issues.  

Normative models of the value of information 

Several theories of the value of obtained information have been proposed in the 

philosophical and psychological literature as plausible models of human intuition. Among them are 

two inductive confirmation measures, namely, measures L and Z (e.g., Crupi, Tentori, & Gonzalez, 

2007; Fitelson, 2001, 2006; Mastropasqua, Crupi, & Tentori, 2010; Tentori, Crupi, Bonini, & 

Osherson, 2007), and OED models (Nelson, 2005, 2008, 2009; Nelson et al., 2010), namely, 

Bayesian diagnosticity, log10 diagnosticity, information gain, Kullback-Leibler distance, probability 

gain, and impact. Although they differ in terms of how the utility of the obtained evidence is 

calculated, both of these classes of normative models are based on Bayes’ rule, and thus, they 

involve prior probabilities (which express one’s initial beliefs with respect to one or more 

hypotheses), likelihoods (which indicate the probability of the new evidence), and posterior 

probabilities (which express one’s beliefs in light of the new evidence). 

Two of the OED models, namely, Bayesian diagnosticity and log10 diagnosticity, are based 

solely on the likelihood ratio (LR), which is a constituent of Bayes’ rule based on likelihoods and 

can be used to express the evidential strength of the new evidence (e.g., Good, 1950, 1983). Four 

other OED models often used in the psychological literature, namely, information gain, Kullback-
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Leibler distance, probability gain, and impact, all entail the consideration of both prior and posterior 

probabilities (e.g., Nelson, 2005, 2008). Information Gain is a measure of uncertainty reduction 

(e.g., Evans & Over, 1996; Nelson, 2005, 2008; Nelson et al., 2010) that derives from Shannon’s 

(1948) definition of entropy (or uncertainty) and was first suggested by Lindley (1956) as a method 

of quantifying the usefulness of an experiment before conducting it. Eimas (1970) was the first to 

use “a measure of the expected reduction in uncertainty in bits of information” (Eimas, 1970, p. 

226) in an information-search task. The Kullback-Leibler distance is a measure of the distance 

between two distributions (e.g., Belov & Armstrong, 2011; Cover & Thomas, 1991; Kullback & 

Leibler, 1951). Probability Gain is a measure of error reduction, that is, it measures the extent to 

which an answer reduces the probability of preferring an erroneous hypothesis. Widely used by 

computer scientists, probability gain was first used as a normative and descriptive model in 

psychology by Baron (1985) (see also Baron, Beattie, & Hershey, 1988). Impact (also called 

absolute change, Nelson, 2005) is the absolute value of the difference between the posterior and the 

prior probability of a hypothesis. This metric has been used independently in different 

psychological studies (Klayman & Ha, 1987; Nelson, 2005; Nelson et al., 2010; Nickerson, 1996; 

Rusconi & McKenzie, in press; Wells and Lindsay, 1980). Whenever the prior probabilities of the 

hypotheses under exam are equal, the predictions of impact are identical to those of probability gain 

(e.g., Nelson, 2005, 2008; Rusconi & McKenzie, in press).  

Measures L and Z are two confirmation measures recently advocated as normatively sound 

and descriptively adequate (e.g., Crupi et al., 2007; Mastropasqua et al., 2010; Tentori et al., 2007). 

Measure Z has been mostly discussed in the literature on expert systems and expert judgment (see 

Crupi & Tentori, 2010, footnote 9). It captures the notion of “relative reduction of uncertainty” 

(Crupi & Tentori, 2010, p. 7) because it quantifies how much a confirming or disconfirming piece 

of evidence reduces the distance between the prior probability of a hypothesis and the certainty that 

that hypothesis is true or false. Measure L is strictly connected to the log LR introduced as a 
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measure of the “weight of evidence” by Alan Turing (see Mastropasqua et al., 2010). Kemeny and 

Oppenheim (1952) proposed this measure as normatively sound, and Fitelson (2001, 2006) also 

argued in favor of it. We refer the reader to the Appendix for details on the calculation and the main 

properties of each of these metrics. 

OED models and measures L and Z are formally and conceptually connected (Mastropasqua 

et al., 2010). However, most of the past research has described and used OED models as metrics 

that allow researchers to quantify the usefulness of the answers to a question (i.e., the new 

evidence) with respect to the constellation of two or more hypotheses under consideration. Going 

back to the example in the first paragraph, one could calculate the utility of a “yes” answer using 

one of the OED models and would thus consider the value of the “yes” answer with respect to both 

the introversion hypothesis and the extroversion hypothesis, that is, with respect to all of the 

hypotheses that could be considered in that example. In contrast, measures L and Z have been 

described as metrics designed to capture changes (i.e., increases or decreases) in the degrees of 

beliefs in a particular hypothesis brought about by a particular piece of evidence, that is, as 

inductive confirmation measures. Considering again the initial example, one could calculate the L 

or Z utility value of the “yes” answer to learn how that answer increases or decreases the 

plausibility of the extroversion hypothesis, that is, the tester considers the impact of the answer with 

respect to only one of the two possible hypotheses. In other words, whereas the values provided by 

the OED models are usually calculated with respect to both the hypothesis under consideration (i.e., 

the focal hypothesis) and its alternate/s, the values predicted by measures L and Z are usually 

calculated with respect to the focal hypothesis only. Previous studies have assumed this distinction 

between theories of the value of obtained evidence that refer to single vs. multiple hypotheses (e.g., 

Mastropasqua et al., 2010; Nelson, 2005). However, most of the metrics on which we shall focus in 

this article (with the exception of information gain and Kullback-Leibler distance, which cannot 
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refer to only one hypothesis) can be implemented in different fashions so that they can capture the 

different evaluation processes under examination (see Appendix).  

Many readers might disagree that certain metrics can be used both as OED models and as 

confirmation measures: An example is probability gain, which, when it is treated as a confirmation 

measure, can no longer be defined as a measure of error reduction (see Appendix; the predictions of 

probability gain become identical to those of impact). However, the study by Wells and Lindsay 

(1980) represents a precedent. They showed that impact (which they called “informativeness” or 

“information gain”) can be implemented with or without absolute values and thus convey different 

meanings. Consider again our initial example: The impact of a “no” answer (¬D) to the question 

“Do you often organize parties?” on the hypothesis that the target person is extroverted (H) can be 

expressed as the absolute difference between the revised probability given the answer (i.e., the 

posterior probability) and the prior probability that the target person is extroverted, that is: 

( ) ( )HpDHp −¬| .          (1) 

Suppose that your initial beliefs about the target were that she/he might be extroverted 

( ( ) 6.=Hp ) and that the “no” answer induces you to slightly revise downward the prior probability, 

yielding a posterior probability of ( ) 4.| =¬DHp . In this case, Equation (1) yields an impact of .2.  

Equation (1) can be used without absolute values, as follows: 

( ) ( )HpDHp −¬| .          (2) 

If we maintain the same values of prior and posterior probabilities given above, Equation (2) 

yields an Impact of -.2. Thus, Equation (1) allows researchers to gauge the absolute magnitude of 

changes in beliefs from prior to posterior probabilities engendered by the new evidence (in this 

example, the “no” answer). In contrast, Equation (2) provides the additional information of the 

direction (in this example, hypothesis-disconfirming) of that belief change, which is indicated by 

the algebraic operator + or - (Wells & Lindsay, 1980, pp. 778–779). 
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Under this light, OED models and measures Z and L have a kinship in that all of these 

metrics provide potentially optimal standards to interpret experimental or test results and in that all 

of them (with the exception of information gain and Kullback-Leibler distance) could potentially be 

used as inductive confirmation measures as well. 

Overview 

In the present experiments, we compared OED models with measures L and Z by testing the 

psychological plausibility of their main theoretical predictions. This investigation adds to the 

literature by deepening the study of which, if any, model best accounts for participants’ intuitions in 

evidence evaluation. From one side, there is a lack of empirical investigation of the descriptive 

adequacy of OED models in evidence evaluation because past research has focused on which OED 

model best captures human information acquisition (e.g., Meder & Nelson, 2012; Nelson, 2005, 

2008; Nelson et al., 2010). From the other side, further investigations are needed to determine 

which measure, L or Z, best describes human information evaluation. Furthermore, previous studies 

considered either OED models or measures L and Z, but none compared them. Therefore, there is a 

lack of empirical investigation on which of these two classes of competing models best corresponds 

to human intuition about the utility of obtained evidence.  

To compare the relative strengths of the competing models, we tested them under different 

types of testing (single- vs. multiple-hypothesis testing) and for different types of evidence 

evaluation. Inductive confirmation measures such as L and Z typically quantify how much a piece 

of evidence confirms or disconfirms a single hypothesis, whereas OED models take into account the 

whole constellation of hypotheses (two or more). Accordingly, the type of evidence evaluation is 

also different. In the case of inductive confirmation measures, it is usually in terms of decreases or 

increases in beliefs, thus conveying information about the direction of the impact of a piece of 

evidence on one’s beliefs with respect to a single hypothesis. In the case of the typical 
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implementation of OED models, the obtained evidence can be evaluated in terms of its helpfulness, 

thus reflecting the magnitude of its impact on one’s beliefs with respect to all hypotheses.   

Therefore, we devised different versions of the same task in which we took into account the 

type of testing and the type of evaluation required from participants. Across the experiments, we 

implemented the models that we compared in different ways (see Appendix).  

Predictions 

Based on previous implementations of OED models (e.g., Nelson, 2005, 2008; Nelson et al., 

2010) and of measures L and Z (e.g., Crupi et al., 2007; Mastropasqua et al., 2010; Tentori et al., 

2007), we might expect that OED models outperform measures L and Z in multiple-hypothesis 

testing even if L and Z are implemented so that they refer to more than one hypothesis (thus being 

potentially equivalent to OED models). Vice versa, we would expect measures L and Z to have an 

advantage over OED models in single-hypothesis testing even if OED models (except for 

information gain and Kullback-Leibler distance) are computed with respect to a single hypothesis 

(thus being treated as confirmation measures). This pattern of results would suggest that some 

norms are better suited to correspond to human intuition about the absolute change in beliefs 

engendered by obtained evidence, whereas others best describe human evaluations when the 

direction of that change is also considered.  

However, it is also possible that the request to evaluate the obtained evidence in terms of 

either its helpfulness or its ability to increase or decrease one’s beliefs might be captured differently 

by OED models and measures L and Z. This would reflect the effect of the type of evaluation. 

Finally, we could derive a third hypothesis: Neither the different implementations of a metric nor 

the different types of evaluation required would affect the descriptive adequacy of the metric. This 

result would indicate that there is a measure that corresponds to human intuition of the value of the 

obtained evidence in a consistent fashion. We conducted the following experiments to assess these 

hypotheses. 
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The experiments shared many methodological properties because, across experiments, we 

varied only the type of testing and the type of evaluation required from participants and, 

consequently, the models’ implementations. Table 1 illustrates the differential properties of the 

experiments. 

Experiment 1 

Method 

Participants 

 Ninety-five undergraduate students volunteered to participate in this study, 48 females and 

47 males with a mean age of 22.33 years (SD = 2.14, range: 19–29). We refer the reader to Table 1 

in Supplementary Materials for details on the sample characteristics of this and the other 

experiments we conducted. 

Materials and procedure 

 We used a modified version of the planet Vuma scenario introduced by Skov and Sherman 

(1986) and thereafter widely used in the hypothesis-testing literature (Garcia-Marques, Sherman, & 

Palma-Oliveira, 2001; McKenzie, 2006; Nelson, 2005; Nelson et al., 2010; Rusconi & McKenzie, 

in press; Sacchi et al., 2012, Study 3; Slowiaczek et al., 1992; Villejoubert & Mandel, 2002). The 

prior probabilities of the hypotheses were set as not equiprobable to obtain divergent predictions 

from the OED models, which can lead to the same utility values when priors are equal (Nelson, 

2005, 2008). Participants were given a booklet in which the following scenario was presented (the 

identifying information of the scenarios varied across experimental groups, which is reflected in the 

brackets): 

Imagine traveling to a planet called Vuma where there are only two types of 

creatures: Gloms and Fizos. Gloms comprise 25% [75%] of Vuma inhabitants, and 

75% [25%] of inhabitants are Fizo. One cannot distinguish a Glom from a Fizo based 
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only on physical appearance. Your task is to identify the eight different creatures that 

you meet by chance.  

Gloms and Fizos each possess certain features, and you will be told which 

percentages of each have these features. You can ask questions of the creatures that 

you encounter to determine whether they have a certain feature. Neither Gloms nor 

Fizos ever lie in replying to a question. 

 In the subsequent pages of the booklet, four features possessed by Gloms and Fizos (i.e., 

having gills, playing the harmonica, exhaling fire, and drinking gasoline) were presented to 

participants along with their probability distributions in the two groups (i.e., the likelihoods). On 

each page, participants were reminded of prior probabilities. An example of how such information 

was conveyed is as follows: 

Below, you are provided with the percentages of Gloms and Fizos on the 

planet Vuma: 

Glom   25% [75%] 

Fizo    75% [25%] 

 The participants were then told the percentage of Gloms and Fizos possessing each of the 

four features. In keeping with Cherubini et al. (2013, Study 2), Rusconi et al. (2012, Study 3), and 

Rusconi and McKenzie (in press, Experiment 2), we presented participants with both the 

percentages of feature occurrences and the percentages of feature nonoccurrences. With this 

method, we could equate the computational steps required by the evaluation of the values associated 

with featural presence and those required by featural absence. Thus, we used the standard 

probability format, in which the relevant information is in the form of percentages (i.e., relative 

frequencies, see Gigerenzer & Hoffrage, 1995, p. 688), plus complementary likelihoods. An 

example is as follows: 
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In the table below, you are provided with the percentages of Gloms and Fizos 

with and without gills: 

 

 With gills Without gills 

Glom 90% 10% 

Fizo 50% 50% 

 

It should be noted that this standard probability format plus complementary likelihoods 

differs from the probability formats described by Gigerenzer and Hoffrage (1995) because it 

provides the additional information attached to featural absence (¬D). This aspect might also be an 

advantage compared with the frequency formats described by Gigerenzer and Hoffrage (1995), 

which focus on featural presence. Thus, although we used a words-and-numbers scenario, which is 

considered less effective in facilitating Bayesian reasoning than experience-based learning (e.g., 

Meder & Nelson, 2012; Nelson, 2009; Nelson et al., 2010), this format might still be more useful 

for participants than the traditional ones. 

Participants were told to imagine meeting a creature and asking her a question (e.g., “Do you 

have gills?”). They were presented with the answer (either a “yes” or a “no”), and they were asked 

to provide an answer utility rating for each encountered creature1. In particular, participants were 

asked (variations are in brackets): “How do you deem that the received answer (“YES”) [(“NO”)] 

decreases/increases the plausibility of the hypothesis that the encountered creature is a Glom 

[Fizo]? (mark a number from -3 to 3).” The labels under the endpoints of the scale were definitely 

decreases and definitely increases. The original instructions in Italian for all of the experiments 

presented in this article are available at the end of Supplementary Materials. 

In terms of the two variables (i.e., type of testing and type of evaluation) that we considered 

to devise the experiments, this formulation reflects single-hypothesis testing and evidence 
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evaluation in terms of decreases and increases in beliefs (see Table 1). We calculated the answer 

utility values predicted by each competing model with respect to the focal hypothesis (either the 

Glom hypothesis or the Fizo hypothesis according to the experimental group) (see Table 2). Recall 

that the answer utility values calculated in terms of information gain and Kullback-Leibler distance 

cannot refer to a single hypothesis. For this reason, their predicted answer utility values were 

identical for the Glom and the Fizo hypotheses. Furthermore, with this implementation, probability 

gain and impact always produce identical answer utility values (see Table 2). 

Each feature was presented twice to each participant: First, the feature was followed by a 

“yes” answer, and the second time, it was followed by a “no” answer, or vice versa. The order of 

the eight feature-answer combinations was randomized. Accordingly, we devised a 4 (feature 

percentage combination: 90%-50%, 75%-15%, 45%-85%, 22%-98%) × 2 (answer: yes vs. no) × 2 

(focal hypothesis: Glom vs. Fizo) × 2 (prior probability associated with the focal hypothesis: .25 vs. 

.75) mixed design, with the first two factors as within-participant variables and the latter two factors 

as between-participant variables (Table 2 shows the formal properties of the 32 conditions). We 

chose the values of prior probabilities and feature combinations to present to participants randomly, 

with the following two general caveats: 1) that these values should not have properties that could 

influence participants’ judgments in a systematic fashion (as would have been the case, for 

example, if all presented percentages had been very extreme); 2) that each feature had a different 

percentage combination (and a different complementary-likelihood combination) from every other 

feature. 

We then asked participants to provide personal data (i.e., sex, age, nationality, and course of 

study). Individuals were approached in quiet places and study rooms within the different buildings 

of the University of Milano-Bicocca and were given the booklet if they agreed to participate. There 

were no time constraints. Upon completion of the booklet, they were thanked and debriefed.  

Data analysis 
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 Pearson and Spearman correlations are more sensitive to sample numerosity than other 

techniques; they do not inform researchers about the cause-effect direction, and they might have 

limited power because they cannot be performed on all data points but only on data collapsed across 

participants. Accordingly, we analyzed participants’ ratings using linear mixed-effects models with 

the open source software environment R (Bates, Maechler, & Bolker, 2012; R Development Core 

Team, 2012; R version 2.15.0, 2012-03-30). This technique ensures statistical robustness and has 

the advantage of taking into account individual differences. This property is relevant to our study 

because previous research has shown that there may be variability in individuals’ responses to 

judgment tasks (e.g., Gigerenzer & Hoffrage, 1995; Rusconi et al., 2013; Villejoubert & Mandel, 

2002). Furthermore, this technique ensures a more reliable estimation of the fixed effects. We fit a 

different mixed-effects model for each of the theories of the value of information that we 

considered (instead of a single mixed-effects model that included all eight competing models as 

potentially significant predictors) because of the overall high correlations among their predicted 

values (see Table 2 in Supplementary Materials). Had we fit a single model, we would have had a 

problem of collinearity.  

For each linear mixed-effects model that we fit, we included one of the eight competing 

models (i.e., one among OED models, measure L, and measure Z) as the fixed effect. As to the 

random-intercepts structure, we considered including the effects of the participants, their courses of 

study, and the 32 experimental conditions on the intercept. We removed the candidate random 

intercepts that did not significantly contribute to the goodness of fit of the mixed-effects model. In 

particular, the analysis started with a full factorial model including the fixed effect and all three 

potentially significant random intercepts. We then tested the candidate random intercepts one by 

one. We considered superfluous, and thus removed, the potential random intercept when the result 

of the LR test comparing the goodness of fit of the models before and after removing it was not 

significant. We refitted all final mixed-effects models after excluding the outliers with a 
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standardized residual at a distance greater than 2.5 standard deviations from zero (e.g., Baayen, 

2008). For each mixed-effects model, we ascertained the statistical significance of the fixed effect 

using a Markov chain Monte Carlo (MCMC) sampling algorithm with 10,000 samples.  

Beyond the analysis of significance, we wanted to acquire more insights into the relative 

strength of each competing model. Therefore, we used the Akaike information criterion (AIC, 

Akaike, 1974) and the Bayesian information criterion (BIC) to compare and rank the eight 

competing models (Wagenmakers & Farrell, 2004). Both the AIC and the BIC are criteria for model 

selection—that is, they allow researchers to identify the best model within a set of models that are a 

priori theoretically relevant. The model for which the AIC (or the BIC) is minimal is to be preferred 

and is considered the best among the candidate models for the data at hand. Once the best model is 

identified, it is possible to rank all of the candidate models by means of the ∆i (e.g., Burnham & 

Anderson, 2001; Wagenmakers & Farrell, 2004), that is, the difference between a particular 

candidate model’s AIC (or BIC) and the best model’s AIC (or BIC). Accordingly, the best model’s 

∆i (AIC) and ∆i (BIC) are equal to zero. Burnham and Anderson (2001) provide some rules of 

thumb to gauge the relative strength of each model in the candidate set based on ∆i (AIC)  values. 

Models with ∆i (AIC)  ≤ 2 have substantial strength of evidence, and those with 4 ≤ ∆i (AIC)  ≤ 7 

have considerably less strength, whereas models with ∆i (AIC) > 10 essentially have no strength.  

A more refined method for scaling models is based on the conditional probabilities of the 

models given the data (e.g., Burnham & Anderson, 2001; Wagenmakers & Farrell, 2004). In 

particular, it is possible to calculate the relative probability of a model i versus all other models in 

the candidate set using the following equation: 
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wi is a normalized ratio called an Akaike weight when ∆i and ∆k refer to the AIC values and a 

Schwarz weight when they refer to the BIC values. Akaike and Schwarz weights provide a measure 

of the strength of evidence of model i relative to the candidate set for the data at hand. It is then 

possible to compute the evidence ratio of both Akaike and Schwarz weights for model i over model 

j, that is, ji ww , or its normalized probability, that is, ( )jii www +  (Wagenmakers & Farrell, 

2004). This ratio provides a measure of how much the evidence favors model i over model j. In the 

present contribution, we shall report the results of both AIC-based and BIC-based model selection 

because both criteria have advantages and disadvantages (e.g., Wagenmakers & Farrell, 2004). 

Results 

Figure 1 shows eight scatterplots (one for each competing model) illustrating the 

relationships between theoretical and observed answer utility values (averaged across the 32 

experimental conditions). Table 3 in Supplementary Materials shows participants’ mean ratings and 

the standard errors of the mean. Table 3 reports the estimated parameters, the 95% highest posterior 

density (HPD) intervals (a Bayesian equivalent of the 95% confidence intervals), their statistical 

significance, and the AIC and BIC values for each of the eight models that we fit. In terms of 

statistical significance, all linear mixed-effects models had pMCMC ≤ .0002 except for those 

including as fixed effects information gain, pMCMC = .6574, and Kullback-Leibler distance, 

pMCMC = .4750. As to the random-intercepts structure, only the final model that included 

Kullback-Leibler distance as the fixed effect did not include the random intercept of participants 

because it did not significantly improve the goodness of fit of the mixed-effects model, χ2(1) = 0, p 

= .9995. The seven other final models included all three random intercepts that we considered (the 

effects of the participants, their courses of study, and the 32 experimental conditions on the 

intercept) because they were significant (or marginally so) on the LR tests, χ2s(1) ≥ 3.11, ps ≤  

.0779. 
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Clear-cut results emerged from the analysis of the AIC and BIC values. Measure Z had both 

∆i (AIC) and ∆i (BIC) = 0 and both Akaike and Schwarz weights = 1. This finding indicates that 

measure Z was the best-fitting model within the candidate set and that none of the other competing 

models had support, with both ∆i (AIC) and ∆i (BIC) ≥ 28 and both Akaike and Schwarz weights = 

.00. The overwhelming advantage of measure Z over the other models in the candidate set in terms 

of descriptive adequacy is confirmed by the values of the evidence ratios and the normalized 

probabilities reported in Table 4. All contrasts favored measure Z, with evidence ratios of both 

Akaike and Schwarz weights yielding very high values, indicating that Z was at least one million 

times more likely to be the best model than any other model. The next-best model was measure L, 

whereas information gain, Kullback-Leibler distance, and Bayesian diagnosticity were the worst 

models in the candidate set (see the ∆i (AIC) and ∆i (BIC) values in Table 3). Together, measure Z 

and measure L outperformed all six OED models more than ninety-eight million times in terms of 

fit to participants’ answer utility ratings (see Table 4). 

Discussion 

Experiment 1 provided clear-cut evidence for the ability of measure Z to capture 

participants’ intuitions about the value of an obtained answer. Measure L was the second-best 

model, and Kullback-Leibler distance and Bayesian diagnosticity were among the worst models. 

The type of testing and the type of evaluation that we required from participants in Experiment 1 

were those typically used in tasks that investigate inductive confirmation measures. In particular, 

the formulation of our request was in terms of how a piece of information decreased or increased 

the plausibility of a hypothesis; thus, we mimicked the labels of the impact scale used in 

Mastropasqua et al. (2010). Indeed, Mastropasqua et al. (2010) asked the participants to estimate 

inductive confirmation using an impact scale with labels such as “The information INCREASES the 

plausibility of the hypothesis” or “The information DECREASES the plausibility of the 

hypothesis.” Furthermore, participants in those experiments had to express their judgments with 
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respect to a single hypothesis. However, Mastropasqua et al. (2010) found measure L to be superior 

both when using numbers (in Experiment 1) and when using pictures (in Experiment 2) to convey 

the uncertainty of the new evidence, whereas we used only a words-and-numbers scenario with the 

standard probability format plus complementary likelihoods. This difference in the materials used 

might partly account for the different results. 

In contrast, our finding is similar to the one that emerged in Crupi et al. (2007). It is 

important to note that Tentori et al. (2007) and Crupi et al. (2007) used an urn problem, which is 

similar to our scenario: Participants were asked to judge the impact of 10 extractions without 

replacement on the hypothesis that urn A versus urn B was selected. Judgments were requested on a 

7-point scale that ranged from “weakens my conviction extremely” to “strengthens my conviction 

extremely.” Despite the similarity in the tasks, we found a clear-cut difference in the descriptive 

ability between measures Z and measure L. This difference was greater than that found in Crupi et 

al.’s (2007) study, in which the descriptive power of L was not so distant from that of Z (see Crupi 

et al., 2007, Table 4).  

Beyond the different tasks used, a possible explanation of the differences between our 

experimental results and previous findings might be that the linear mixed-effects models that we 

used ensured greater statistical robustness than the correlations used in Tentori et al. (2007), Crupi 

et al. (2007), and Mastropasqua et al. (2007) (see the Data analysis section).  

Another original aspect of Experiment 1, compared with previous studies in the literature, is 

that we computed the answer utility values predicted by the OED models with respect to a single 

hypothesis. That is, we calculated the OED models differently from their typical implementations, 

which refer to the whole constellation of hypotheses. We did this to allow a comparison between 

the OED models and measures L and Z as well as to compare the models’ ability to capture the 

hypothesis-confirming vs. hypothesis-disconfirming direction of the belief change engendered by 

the obtained evidence. The exceptions were information gain and Kullback-Leibler distance, which 
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cannot refer to a single hypothesis. Indeed, they were introduced as fixed effects in the only two 

mixed-effects models that were not statistically significant. Although we attempted to make the 

other OED models more similar to inductive confirmation measures such as L and Z, the relative 

strengths of these OED models compared with those of measures L and Z were poor.  

These results are the first in the literature that emerged from an empirical comparison of 

measures L and Z and OED models. Furthermore, these results are also the first to give insights in 

absolute terms because the analysis of significance suggested that two of the OED models, namely, 

information gain and Kullback-Leibler distance, might be poor predictors of human judgments of 

the value of the obtained evidence in this type of task and with this task requirement, whereas all 

other competing models might be good predictors. 

Experiment 2 

In Experiment 2, we used the same task as in Experiment 1, but we rephrased the question 

on answer utility so that we could assess the adequacy of the models when participants had to use 

another type of evaluation, that is, an evaluation in terms of the helpfulness of the received answer 

(see Table 1).  

Method 

Participants 

 Ninety-two undergraduate students of the University of Milano-Bicocca volunteered to 

participated in this study, 72 females and 20 males with a mean age of 20.6 years (SD = 2.02, range: 

18-33).  

Materials and procedure 

 The materials and procedure were identical to those used in Experiment 1. The only 

difference was in task requirement. The answer utility rating was required from participants in the 

following way (variations are in brackets): “How do you deem that the received answer (“YES”) 

[(“NO”)] is helpful for ascertaining the possibility that the encountered creature is a Glom [Fizo]? 
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(mark a number from -3 to 3)”. The labels under the endpoints of the scale were definitely useless 

and definitely useful. As in Experiment 1, we calculated the theoretical values of answer utility so 

that they could convey the confirmatory or falsificatory utility of the received answer with respect 

to a single hypothesis (see Table 2). Recall that information gain and Kullback-Leibler distance 

cannot be implemented relative to a single hypothesis, and thus, their predicted values were 

identical for the Glom and the Fizo hypotheses (see Table 2). Furthermore, according to this 

implementation, probability gain and impact always yield the same answer utility values (see Table 

2). 

Results 

We analyzed participants’ ratings following the same statistical procedures used in 

Experiment 1. We did not fit a single linear mixed-effects model that included all of the competing 

models as fixed effects because their theoretical values were highly correlated (see Table 2 in 

Supplementary Materials). Table 3 in Supplementary Materials shows the mean participants’ 

ratings and the standard errors of the mean. The eight scatterplots in Figure 2 illustrate the 

relationships between participants’ ratings and the values predicted by each model averaged across 

the 32 experimental conditions. Table 5 shows the results of the eight linear mixed-effects models 

that we performed. The random-intercepts structure was identical for the eight mixed-effects 

models and differed with respect to Experiment 1. In particular, we excluded the random effect of 

participants’ course of study on the intercept because it did not significantly contribute to the 

goodness of fit of the mixed-effects models, χ2s(1) ≤ .84, ps ≥ .3605. In contrast, we included in all 

final models the effects of the participants and of the 32 experimental conditions on the intercept 

because they significantly improved the goodness of fit of the models, χ2s(1) ≥ 19.02, ps ≤ .0001. 

The analysis of significance revealed that two linear mixed-effects models involving two OED 

models as fixed effects were not significant, namely, Kullback-Leibler distance, pMCMC = .2742, 
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and information gain, pMCMC = .6042. In contrast, all other mixed-effects models were 

statistically significant, pMCMC ≤ .0022.  

The analysis of the AIC and BIC values revealed that measure Z was the best-fitting model 

within the candidate set, as shown by the values of both ∆i (AIC) and ∆i (BIC) being equal to 0. The 

next-best model was measure L, whose ∆i (AIC) and ∆i (BIC) values were both 8. The evidence 

ratios of both Akaike and Schwarz weights favored measure Z more than fifty-four times over 

measure L, giving normalized probabilities of .98 (see Table 6). All OED models had ∆i (AIC) and 

∆i (BIC) > 10, indicating the poor support they received from the data. The superiority of measure Z 

over the OED models in fitting the data is clear from the evidence ratios and normalized 

probabilities in Table 6. Measure Z outperformed both probability gain and impact more than six 

hundred times and all other OED models more than ten thousand times. Together, measures L and Z 

outperformed all six OED models more than three hundred times. The normalized probabilities 

were 1 in all contrasts involving measure Z and OED models. 

Discussion 

Measure Z was the best-fitting model and measure L was the second-best model in 

Experiment 2, in which we asked participants to evaluate the received answer in terms of its 

helpfulness with respect to testing a single hypothesis (either the Glom or the Fizo hypothesis). As 

in Experiment 1, we implemented OED models so that they could be considered additional 

inductive confirmation measures (which refer to a single hypothesis). Again, the exceptions were 

information gain and Kullback-Leibler distance, which were introduced as fixed effects in the only 

two mixed-effects models that were not statistically significant. The lack of significance of these 

two OED models replicates that found in Experiment 1. The analysis of AIC and BIC values 

revealed that the different implementations of the other OED models did not achieve an adequate 

description of participants’ answer utility ratings compared with measures L and Z.  
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These findings reveal a pattern consistent with the results from Experiment 1. However, the 

relative distances between the scaled models were more pronounced in Experiment 1 than in 

Experiment 2. This finding might reflect the overall greater ability of measures Z and L to capture 

human intuition about the value of obtained evidence in terms of decreases or increases in beliefs 

(Experiment 1) rather than in terms of evidence helpfulness (Experiment 2). Indeed, this was the 

only difference in task requirement between Experiment 1 and Experiment 2, with the type of 

testing (single-hypothesis testing in both experiments) having been left unchanged. 

Experiment 3 

In the first two experiments, we asked participants to judge the impact of a piece of evidence 

(i.e., the “yes” or “no” answer to a question) on a single hypothesis (i.e., the membership of an 

imaginary creature in a group). The crucial innovation in Experiment 3 was that we requested that 

participants respond with utility ratings with respect to two hypotheses (i.e., the membership of the 

encountered creature in one category and in the alternative category). In terms of the type of 

evaluation, we asked participants to evaluate the helpfulness of the received answer, as in 

Experiment 2 (see Table 1).  

Method 

Participants 

 One hundred and two undergraduate students of the University of Milano-Bicocca 

volunteered to participate in this study, 51 females and 50 males with a mean age of 21.63 years 

(SD = 1.99, range: 18–29).  

Materials and procedure 

 The materials and procedure were identical to those used in the previous experiments. The 

only difference was in task requirement. The answer utility rating was required from participants in 

the following way (variations are in brackets): “How do you deem that the received answer 

(“YES”) [(“NO”)] is helpful in distinguishing between the possibility that the encountered creature 
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is a Glom and the possibility that it is a Fizo? (mark a number from -3 to 3)”. The labels under the 

endpoints of the scale were definitely useless and definitely useful.  

In terms of the two variables that we took into account to devise the experiments, namely, 

the type of testing and the type of evaluation, this task requirement aimed to capture multiple-

hypothesis testing (participants had to consider both the Glom and the Fizo hypotheses) and the 

evaluation of the helpfulness of the obtained evidence (i.e., the magnitude of its impact). 

Accordingly, the algebraic operator of the theoretical utility values did not indicate hypothesis 

confirmation or hypothesis falsification. The only models that also predicted negative utility values 

were information gain and probability gain, with a meaning of uncertainty increase and error 

increase, respectively (see Table 7). 

Results 

 In Figure 3, there are eight scatterplots (one for each of the competing models that we 

considered) in which the mean ratings (averaged across the 32 cells) are compared with the 

normative predictions. Table 3 in Supplementary Materials shows the mean ratings (and the 

standard errors of the mean) provided by participants across the 32 cells of the experimental design. 

As in the previous experiments, we did not fit a single linear mixed-effects model that included all 

of the competing models as fixed effects because their theoretical values were overall highly 

correlated (see Table 4 in Supplementary Materials). Table 8 shows the estimates of the fixed 

effects resulting from the linear mixed-effects models that we fit, their statistical significance, and 

the AIC and BIC values. The inclusion of each of the random intercepts that we considered 

significantly improved the goodness of fit of all models, χ2s(1) ≥ 12.59, ps ≤ .0004. The fixed 

effects were significant predictors in all models (except for impact, which fell slightly short of 

significance, pMCMC = .0522). Looking at the ∆i (AIC) and ∆i (BIC) values reported in Table 8, it 

emerges that measure Z was the only model with ∆i  ≤ 2 (considering either the AIC or the BIC 

values), that is, the only one that received substantial support and was thus the best fit to the data 
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according to Burnham and Anderson (2001)’s rule. Measure L, information gain, and probability 

gain, received less support, and Bayesian diagnosticity, impact, and log10 diagnosticity essentially 

had no support. These findings are corroborated by the scaling method based on conditional 

probabilities. Table 8 reports Akaike and Schwarz weight values greater than .75 for measure Z, 

equal to .17 for measure L, and less than .04 for the other candidate models. Recall that these values 

are normalized probabilities (i.e., they sum to 1) that can be interpreted as the likelihoods of the 

models to best fit the data at hand given a set of candidate models. 

Table 9 shows the results of the “pair-wise” evidence ratios based on conditional 

probabilities. It emerged that measure Z was 4.48 times more likely to be the best model than was 

the second-best model, measure L (normalized probability of .82). Measure Z’s greater fit to the 

data was even more clear-cut compared with all other competing models. Measure Z was twenty to 

fifty-five times more likely to be the best predictor than information gain and probability gain. It 

outperformed Bayesian diagnosticity more than one hundred times, and it was a more than one 

thousand times better-fitting model than impact, Kullback-Leibler distance, and log10 diagnosticity 

(normalized probabilities of 1). Overall, measures L and Z were more than 10 times better than the 6 

OED models at predicting participants’ ratings (normalized probabilities ≥ .93). 

Discussion 

 Experiment 3 showed that measure Z was the best predictor of participants’ ratings in the 

candidate set. This is the first empirical investigation that implements measure Z in a different way 

compared with the traditional implementation (see Appendix and Table 7) so that it can capture 

multiple-hypothesis testing and the evaluation of the helpfulness of the obtained evidence. 

Therefore, our findings extended measure Z’s field of application and showed its ability to 

correspond to participants’ estimates of the impact of the acquired evidence on the constellation of 

two hypotheses.  
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As in the previous experiments, measure Z outperformed measure L, in keeping with Crupi 

et al. (2007) and contrary to Mastropasqua et al. (2010). Indeed, the evidence ratio of both Akaike 

weights and Schwarz weights for Z over L was 4.48, and the normalized probability was .82 (see 

Table 9). However, measure L was also a good predictor, in line with both Crupi et al. (2007) and 

Mastropasqua et al. (2010). Indeed, together, Z and L outperformed all 6 OED models (evidence 

ratios greater than 10 and normalized probability higher than .9). This finding is relevant because 

we asked participants to evaluate the received answers with respect to both hypotheses, and OED 

models have usually been conceived exactly as metrics that quantify answer utility with respect to 

two or more hypotheses rather than a single hypothesis. However, it should be noted that contrary 

to the two previous experiments, all OED models were statistically significant predictors (or 

marginally significant in the case of impact). This finding indicates that they were still good models 

in absolute terms and that the task requirement of Experiment 3 overall improved their ability to 

correspond to participants’ ratings. It is interesting to note that among the OED models, information 

gain and probability gain were the best-fitting models and log10 diagnosticity was the worst. This 

finding, relative to the set of OED models, echoes the results from the studies on information 

gathering (Nelson, 2005; Nelson et al., 2010). Indeed, Nelson (2005), who used a planet Vuma 

scenario similar to ours, found that log10 diagnosticity, along with Bayesian diagnosticity, was 

empirically inadequate (beyond being theoretically flawed). He also found that information gain 

was the best predictor of participants’ question utility ratings, followed by probability gain. Nelson 

et al. (2010) found that probability gain was the best model when participants experienced 

environmental probabilities in a simulated-plankton-categorization task. Furthermore, participants 

exhibited a tendency to prefer to inquire about the feature with higher Iinformation gain when the 

task used the planet Vuma scenario. 

We conducted an additional experiment (which we shall refer henceforth to as the 

Additional Experiment). As shown in Table 1, we required from participants an evaluation in terms 
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of decreases or increases in beliefs with respect to two hypotheses in the Additional Experiment. 

This evaluation/testing combination produced a phrasing of the task requirement that might have 

appeared odd to participants for pragmatic-conversational reasons. This might have been the reason 

the results partially differed from those of the three previous experiments. In particular, three 

models outperformed the others in the candidate set: Probability gain, information gain, and 

measure Z. According to the BIC, all three of these models scored equally well, with probability 

gain preferred over information gain and measure Z according to the AIC. Both model selection 

criteria agreed in selecting measure L as the next-best model and impact, log10 diagnosticity, and 

Bayesian diagnosticity as the worst models in the candidate set.  

We refer the reader to Tables 5–6 and Figure 2 in Supplementary Materials for the results of 

this Additional Experiment. 

General Discussion 

The experiments presented in this article provided consistent evidence for the ability of 

measure Z to predict participants’ naïve judgments of answer utility better than 7 other obtained 

evidence value models. Measure Z, along with measure L, is an inductive confirmation metric 

recently advanced as a normatively appealing and empirically good approximation of human 

intuition about the impact of a datum on one’s beliefs about the plausibility of a hypothesis (Crupi 

et al., 2007; Mastropasqua et al., 2010; Tentori et al., 2007). However, there is still debate on 

which, between L and Z, best accounts for human confirmation judgments (see Mastropasqua et al., 

2010, p. 949). The 6 other models that we included in the candidate set were OED models: 

Bayesian diagnosticity, log10 diagnosticity, information gain, Kullback-Leibler distance, probability 

gain, and impact. Some of the OED models have been used in recent studies of human evidence 

evaluation. For example, Rusconi and McKenzie (in press) used impact and probability gain; 

Cherubini et al. (2013) used information gain and probability gain; Rusconi et al. (2013) used 

information gain and log10 diagnosticity (in decibans, see Appendix); Rusconi et al. (2012) used 
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information gain; and Cherubini, Russo, Rusconi, D’Addario, and Boccuti (2009) used information 

gain and log10 diagnosticity (the latter expressed in decibans). However, past research on human 

evidence evaluation lacked an empirical investigation of which, if any, of the OED models best 

accounted for people’s judgments. Furthermore, there was a lack of empirical comparisons among 

measures L and Z and OED models. Our experiments provided the first answer to these issues.  

Our experiments added to the extant literature by taking into account the type of testing 

(single-hypothesis vs. multiple-hypothesis testing) and the type of evaluation (assessment of 

evidence helpfulness vs. evidence’s ability to increase or decrease one’s beliefs). Furthermore, we 

implemented the models in different ways compared with their traditional implementations in the 

literature to pit them against one another in both single- and multiple-hypothesis testing. Whichever 

combination of testing (and thus of mathematical implementation) and evaluation type we used, 

measure Z was the best-fitting model, and measure L was the next-best model. In contrast, the OED 

models, in particular Bayesian diagnosticity, Kullback-Leibler distance, and log10 diagnosticity, 

were consistently poorer predictors of participants’ answer utility ratings. Only one combination of 

testing/evaluation type yielded a more nuanced pattern of results, whereby probability gain, 

measure Z, and information gain scored almost equally well. This occurred in the Additional 

Experiment, for which we argued that participants might have encountered difficulties with the 

phrasing of the task requirement. In this case, the outperformance of measure Z might have been 

muted for pragmatic-conversational reasons.  

The advantage of measure Z over the competitors was greater when the task required single-

hypothesis testing, that is, in Experiments 1–2, in which the normalized probabilities of both Akaike 

and Schwarz weights were ≥ .98, than in experiments with multiple-hypothesis testing. In 

particular, the descriptive adequacy of measure Z had its highest peak in Experiment 1, in which 

participants evaluated the obtained answer in terms of how much it decreased or increased the 

plausibility of the focal hypothesis. In contrast, the OED models, in particular probability gain and 
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information gain, performed better in tasks of multiple-hypothesis testing (Experiment 3 and the 

Additional Experiment) than in those of single-hypothesis testing.  

This pattern of findings suggests that although measure Z fits well under different 

mathematical implementations (that is, both in single-hypothesis and multiple-hypothesis testing) 

and types of evaluation, its advantage is greater when used as a typical inductive confirmation 

metric, that is, when it measures the increases and decreases in one’s beliefs with respect to a single 

hypothesis. In a similar way, although OED models are overall poorer predictors of human intuition 

in evidence evaluation than Z, they better fit the observed judgments when they are implemented in 

a way that captures changes in one’s beliefs with respect to a constellation of two or more 

hypotheses. 

Negative utility 

An important issue concerning the theories of evidence utility is represented by negative vs. 

non-negative utility (e.g., Evans & Over, 1996; Nelson, 2008). Nelson (2008) discussed this issue 

with reference to OED models. For example, negative utility distinguishes Kullback-Leibler 

distance, which is a non-negative metric, from information gain, which assumes negative values 

whenever there is an increase in uncertainty about the hypotheses after the receipt of new evidence. 

Recall that both metrics cannot be implemented with respect to a focal hypothesis but only with 

respect to a constellation of two or more hypotheses. In this sense, Experiment 3 and the Additional 

Experiment, in which participants were required to evaluate evidence with respect to two 

hypotheses, provided the most useful data for comparing the psychological plausibility of these two 

models. The results of both experiments favored information gain over Kullback-Leibler distance: 

The evidence ratios of both Akaike and Schwarz weights were 90.02 (giving normalized 

probabilities of .99 in favor of information gain). Should one conclude that a model of the obtained 

evidence that allows for negative utility values, such as information gain, is more descriptively 

adequate than a non-negative metric, such as Kullback-Leibler distance? Although information gain 
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outperformed Kullback-Leibler distance in our multiple-hypothesis testing tasks, overall, its 

descriptive adequacy is called into question. Metrics such as Z and L consistently outperformed 

information gain in terms of describing participants’ answer utility ratings, and this also held true 

when Z and L were implemented as non-negative measures (i.e., in Experiment 3 and the Additional 

Experiment; see Table 7. See the discussion above for the interpretation of the results that emerged 

from the Additional Experiment).  

However, do people value some given evidence in terms of negative utility values? Nelson 

(2008) set the issue in these terms: “It is ultimately an empirical question whether people 

experience some information as having zero or negative utility” (Nelson, 2008, p. 154). The answer 

provided by our experimental results is affirmative. Looking at the descriptive values reported in 

Table 3 in Supplementary Materials and shown in Figures 1–2, it emerges that when people are 

given the possibility to provide negative ratings (our rating scale ranged from -3 to 3), they do 

sometimes conceive the utility of an obtained datum in terms of negative values. In particular, on 

average, negative utility ratings, when provided, appeared to be associated with single-hypothesis 

testing (Figures 1–2) and not with multiple-hypothesis testing (e.g., Figure 3). Accordingly, a model 

of the utility of obtained evidence that allows for negative utility values in single-hypothesis testing 

but not in multiple-hypothesis testing, such as Z, appears to be a descriptively useful criterion to 

gauge human intuition. 

Implications for model selection in evidence evaluation and information gathering 

The results of the present experiments bear implications for the selection of the normative 

criteria against which human judgments on these types of tasks ought to be compared. In an article 

on Turing’s statistical work during World War II, Good (1979) stated “A deciban or half-deciban is 

about the smallest change in weight of evidence that is directly perceptible to human intuition” 

(Good, 1979, p. 394). Cherubini et al. (2009) found that non-experts engaged in hypothesis-testing 

tasks with abstract materials could perceive evidence if its impact was at least .12–.18 bits 
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(corresponding to 3.5–4.5 decibans in terms of log10 diagnosticity). However, experts (physicians) 

were able to perceive the clue informativeness (symptoms) even when its impact was only .03 bits 

or 1.8 decibans (see Cherubini et al., 2009, pp. 560–561). The results of our experiments raise the 

question of whether a more psychologically plausible model than log10 diagnosticity or information 

gain, namely, measure Z, might reveal an even more sophisticated ability of human intuition to 

perceive minimal changes in evidence informativeness. Indeed, it has been shown that the model 

selected by the experimenter as the normative criterion to gauge people’s behavior can be decisive 

for the interpretation of experimental results. For example, in his revision of the literature on 

information gathering, Nelson (2005) noted that using either information gain or impact instead of 

probability gain in the study by Baron et al. (1988) would have caused the information bias (i.e., the 

tendency to choose a test as useful although it is normatively worthless) found by the authors to 

largely disappear (see Nelson, 2005, p. 985).  

Our findings relative to human evidence evaluation might also suggest further lines of 

research on human information gathering. Previous literature has shown that OED theories are 

plausible models of human information acquisition (e.g., Nelson, 2005; Nelson et al., 2010). 

However, these studies did not include measures L and Z in the candidate set. Accordingly, further 

development of such work might include testing the psychological plausibility of metrics such as 

L and Z in the form of expected L and expected Z. More precisely, expected L and expected Z could 

be computed as the sum of the diagnosticities of the “yes” and “no” answers, each weighted for 

their probability of occurrence (e.g., Rusconi & McKenzie, in press, footnote 4). 

Information format 

In our experiments, we used a modified version of the planet Vuma scenario, a words-and-

numbers vignette often used in the Bayesian reasoning literature (Garcia-Marques, Sherman, & 

Palma-Oliveira, 2001; McKenzie, 2006; Nelson, 2005; Nelson et al., 2010; Rusconi & McKenzie, 

in press; Sacchi et al., 2012, Study 3; Skov & Sherman, 1986; Slowiaczek et al., 1992; Villejoubert 
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& Mandel, 2002). In particular, we used the standard probability format (i.e., percentages) to 

convey the distributions of Gloms and Fizos on Vuma as well as their feature distributions. It has 

been shown that presenting probabilistic information in words-and-numbers formats is not 

meaningful for inductive inference (e.g., Cosmides & Tooby, 1996; Gigerenzer & Hoffrage, 1995; 

Meder & Nelson, 2012; Nelson, 2009). However, we added the complementary likelihoods to the 

standard probability format, and this addition might have enhanced participants’ sensitivity to data 

informativeness (e.g., Rusconi & McKenzie, in press, Experiment 2). In any case, even in a 

judgment task with a suboptimal information format such as ours, the results of the analysis of 

significance suggested that participants were able to adhere to theoretically optimal models of the 

value of obtained answers. Indeed, the significant fixed effects indicated that the observed 

participants’ responses were associated with the theoretical predictions of the models (with the 

exceptions of information gain in Experiments 1–2, Kullback-Leibler distance in Experiments 1–2 

and the Additional Experiment, and impact in Experiment 3 and the Additional Experiment). Future 

studies should extend this investigation to tasks that use different information formats and, in 

particular, that focus on experience-based learning of environmental probabilities (e.g., Meder & 

Nelson, 2012; Nelson, 2009; Nelson et al., 2010).  

The dichotomy between evidence evaluation and evidence use 

The ability of participants to adhere to a normatively correct criterion, such as Z, provides 

evidence for optimal data evaluation. This finding is remarkable if we consider that previous studies 

using the differential answer diagnosticity task and requiring posterior probability estimates from 

participants found a relative insensitivity to Bayesian answer diagnosticity when unfamiliar 

scenarios, such as ours, were used (McKenzie, 2006; Rusconi & McKenzie, in press; Skov & 

Sherman, 1986, p. 118; Slowiaczek et al., 1992). This finding points to the difference between 

evaluating the impact of an obtained piece of evidence and using this evaluation to revise one’s 

initial beliefs. Indeed, it has been shown that people’s posterior probability estimates might be 
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prone to biases even though the evidence-evaluation process might be consistent with normatively 

appealing models (Tentori et al., 2007). This difference in performance when evaluating vs. using 

evidence might be explained in different ways. One reason might reside in the response mode. 

People might find it more difficult to express their likelihood or belief-revision estimates in terms of 

probabilities than to use an impact scale (e.g., Mastropasqua et al., 2010; Tentori et al., 2007) or a 

rating scale such as that used in our experiments. Another possible explanation rests on the 

repartition of the judgment process (e.g., Fischhoff & Beyth-Marom, 1983; Slovic & Lichtenstein, 

1971). People might perceive the impact of obtained evidence in a Bayesian fashion (Rusconi et al. 

[2013] noted a case of misperception, but they used weight of evidence, that is, log10 diagnosticity, 

and not Z as the normative criterion). However, they might then fail in the combining process—that 

is, they might integrate their estimated impact of the obtained evidence with their initial beliefs (i.e., 

the priors) in a non-Bayesian fashion. One example of such misaggregation is the integration of 

priors and new evidence in an additive instead of a multiplicative, Bayesian way (e.g., Fischhoff & 

Beyth-Marom, 1983; Juslin, Nilsson, & Winman, 2009; Rusconi et al., 2013). If the latter were the 

case, it would be possible to devise algorithms that receive as inputs people’s assessments of the 

components of Bayes’ model. In this way, mechanical systems could help people avoid the 

computational errors that they might incur during the combining process (Fischhoff & Beyth-

Marom, 1983). 
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Footnotes 

1 In all of the experiments in the present article, participants also estimated the probability (between 

0% and 100%) that the encountered creature was a Glom [Fizo]. Figures illustrating means and 

standard errors of the mean are provided in Figure 1 of Supplementary Materials. Furthermore, at 

the end of the questionnaire, participants rated on a 7-point scale to what extent they considered the 

priors when (1) rating answer utility and (2) estimating the posterior probabilities (“1” = little, “7” = 

a lot). However, we do not discuss these results because they are out of the scope of the present 

contribution. 
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Appendix 

All of the models described in this appendix are based on Bayes’ rule, which can be 

expressed in terms of odds (e.g., Beyth-Marom & Fischhoff, 1983; Fischhoff & Beyth-Marom, 

1983) as follows:  

( )
( )

( )
( )

( )
( )HDp

HDp
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Hp
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DHp
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¬
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¬ |

|
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| ,       (A1) 

where p( denotes the “probability of,” | should be read as “given that,” H is the hypothesis 

being or to be tested (i.e., the focal hypothesis), ¬H stands for the alternate/s (¬ is the logical 

symbol for negation), and D represent the new evidence. From the left, there are three ratios in 

Equation (A1): The posterior odds, which defines the updated tester’s beliefs after receiving the 

new evidence; the prior odds, which quantifies the tester’s initial beliefs (prior to receiving the new 

evidence); and the likelihood ratio (LR), which expresses the probability of receiving the new 

evidence as a function of the truth or falsity of the focal hypothesis.  

Bayesian diagnosticity and log10 diagnosticity 

Bayesian diagnosticity and log10 diagnosticity are two OED models based solely on the LR 

expressed in Bayes’ rule (also known as (Bayes) factor, e.g., Good, 1983, and equal to Jeffreys’ K, 

e.g., Good, 1950; the third term from the left in Equation (A1)). Accordingly, both Bayesian 

diagnosticity and log10 diagnosticity provide a net value of the informativeness of a datum, and to 

compute these measures, it is not necessary to know either the prior or the posterior probabilities of 

the hypotheses. Both measures can be implemented so that they can define either the usefulness of a 

datum with respect to a single hypothesis or the usefulness of a datum with respect to the whole 

constellation of hypotheses.  

Nelson (2005, 2008) used Bayesian diagnosticity and log10 diagnosticity without reference to 

a focal hypothesis by using the “maximum” formulation. Another example of implementation 

without reference to a focal hypothesis is the absolute log LR to which Klayman and Ha (1987) 

referred in the appendix of their article (see also Evans & Over, 1996, Equation (2)). In the present 
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article, we followed Nelson’s implementation to define the utility values of Bayesian diagnosticity 

and log10 diagnosticity in the case of multiple-hypothesis testing. That is, the Bayesian diagnosticity 

of a “yes” answer is given by the following expression: 

( ) ( ) ( ) ( )[ ]HDpHDpHDpHDp ||,||max ¬¬ .     (A2) 

The Bayesian diagnosticity of a “no” answer is expressed as follows: 

( ) ( ) ( ) ( )[ ]HDpHDpHDpHDp ||,||max ¬¬¬¬¬¬ .    (A3) 

In a similar way, the log10 diagnosticity of a “yes” answer is given by the following 

expression (Nelson, 2005): 

( ) ( ) ( ) ( )[ ]HDpHDpHDpHDp ||,||maxlog10 ¬¬ .    (A4) 

The log10 diagnosticity of a “no” answer is expressed as follows: 

( ) ( ) ( ) ( )[ ]HDpHDpHDpHDp ||,||maxlog10 ¬¬¬¬¬¬ .   (A5) 

In contrast, Irving John Good (1916–2009), who was the statistical assistant of Alan Turing 

(1912–1954) during World War II, described how Turing used log diagnosticity with respect to a 

single hypothesis: “Turing introduced the expression ‘(Bayes) factor in favour of a hypothesis’” 

(Good, 1979, p. 393) and: “Dr. A. M. Turing suggested in a conversation in 1940 that the word 

“factor” should be regarded as (…) the factor in favour of the hypothesis H in virtue of the result of 

the experiment” (Good, 1950, p. 63). Taking these definitions literally, Bayesian diagnosticity 

reduces to the mere LR, whereas log10 diagnosticity can be expressed as follows for a “yes” answer: 

( ) ( )HDpHDp ¬||log10 ,        (A6) 

and as follows for a “no” answer: 

( ) ( )HDpHDp ¬¬¬ ||log10 ,       (A7) 

where H stands for the focal hypothesis. Turing called the logarithm in base ten of the LR 

“weight of evidence,” an expression first used by Peirce (1878) with a similar meaning (e.g., Good, 

1983). Turing defined the unit of measure of the weight of evidence as ban or, by analogy with the 

decibel scale in acoustics, deciban, one-tenth of a ban, when the base of the logarithm is 10 (e.g., 
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Good, 1950, 1979, 1983; Rusconi et al., 2013). In the experiments described in the main text, we 

used decibans. 

Evans and Over (1996) argued that the measures based on LR are to be favored as normative 

criteria for epistemic utility over other standards (such as information gain) because they provide 

positive values of utility whenever data are informative. However, Nelson (2005, 2008, 2009) 

described some flaws of these measures. For example, Bayesian diagnosticity and log10 

diagnosticity cannot be applied straightforwardly when there are more than two hypotheses under 

examination. Furthermore, they sometimes provide infinite utility values when one hypothesis is 

confirmed or disconfirmed with certainty by the evidence or when feature probabilities are extreme 

(Nelson, 2005, 2008, 2009). 

Information gain 

Information gain is a measure of uncertainty reduction (e.g., Evans & Over, 1996; Nelson, 

2005, 2008; Nelson et al., 2010). Specifically, it is a theory of the value of information that derives 

from Shannon’s (1948) definition of entropy (or uncertainty), which is as follows: 

( ) ( ) ( )i

n

i
in xpxpXE 2

1
log∑

=

−= ,       (A8) 

where X is a discrete random variable and ix  represents the possible values with probability 

( )ixp . In turn, this equation is related to the Second Law of Thermodynamics and to Boltzmann’s 

definition that connects entropy and probability by a logarithmic relationship. Information gain 

defines uncertainty reduction by subtracting posterior entropy from prior entropy, both when a 

feature is present (e.g., a “yes” answer), as in the following expression: 

( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ]{ }DHpDHpDHpDHp

HpHpHpHp
|log||log|

loglog

22

22
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 ,  (A9) 

and when a feature is absent (e.g., a “no” answer), as expressed in the following equation: 

( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ]{ }DHpDHpDHpDHp

HpHpHpHp
¬¬−×¬¬+¬−×¬−
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where ( )Hp  and ( )Hp ¬  are the prior probabilities of the focal hypothesis and the alternate, 

respectively. ( )DHp |  and ( )DHp |¬  are the posterior probabilities of the occurrence of the focal 

hypothesis given the receipt of new evidence D and of the alternate given the receipt of the same 

evidence, respectively. Finally, ( )DHp ¬|  and ( )DHp ¬¬ |  are the posterior probabilities of the 

respective hypotheses when evidence D is absent. Being the logarithm in base 2, the unit of 

measure of information gain is the bit. 

In the psychological literature, Oaksford and Chater (1994, 2003) proposed an “optimal data 

selection model” in which expected information gain was the normative standard that aimed to 

account for people’s performance on Wason’s (1966, 1968) selection task. 

An important property that distinguishes information gain from the diagnosticity measures 

illustrated above is that information gain allows negative utility values. Negative information gain 

does not mean that new evidence disconfirms a particular hypothesis. On the contrary, it means 

greater uncertainty about the hypotheses after the receipt of new evidence than before (e.g., Rusconi 

et al., 2013). That is, negative information gain means information loss, at least whenever 

information is conceived under a strictly logical conception (e.g., Evans & Over, 1996). As Evans 

and Over (1996) noted, this definition of information gain leads to some anomalies in terms of the 

psychological plausibility of this metric. For example, in a case in which there are two hypotheses 

and a datum shifts the probability of the focal hypothesis from p = .3 to p = .5, there is a loss of 

information caused by the increased uncertainty. Indeed, the highest peak of uncertainty occurs 

when the hypotheses are equiprobable (i.e., when p = .5). However, a tester interested in the truth 

value of the focal hypothesis would benefit from the receipt of the new datum and would likely 

judge it a gain of information (Evans & Over, 1996). 

Accordingly, information gain does not provide utility values of obtained evidence with 

respect to a single hypothesis but only with respect to two or more hypotheses. It is thus not 
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possible to implement information gain so that positive and negative utility values systematically 

indicate hypothesis confirmation and hypothesis falsification, respectively.  

Kullback-Leibler distance 

The Kullback-Leibler distance (also known under a variety of other labels that include 

Kullback-Leibler divergence, Kullback-Leibler discrepancy, Kullback-Leibler information, 

Kullback-Leibler loss, cross-entropy, relative entropy, information divergence, and information for 

discrimination) is a measure of the distance between two distributions (e.g., Belov & Armstrong, 

2011; Cover & Thomas, 1991). Given two probability distributions, f(x) and g(x), Kullback-Leibler 

distance can be expressed by the following equation (e.g., Belov & Armstrong, 2011; Burnham & 

Anderson, 2001): 

( ) ( ) ( )
( ) dx
xg
xfxfgfKL ln, ∫

+∞

∞−

= .       (A11) 

( )gfKL ,  represents the loss of information that occurs when the distribution g is used to 

approximate the distribution f. Accordingly, Kullback-Leibler distance is an information-theoretic 

measure of information loss or inefficiency (e.g., Burnham & Anderson, 2001, 2004; Cover & 

Thomas, 1991). It is a non-negative metric that yields a value of zero if and only if the two 

distributions are identical (e.g., Belov & Armstrong, 2011; Cover & Thomas, 1991; Nelson, 2008). 

The Akaike information criterion (AIC) for statistical model selection (Akaike, 1974) is based on 

Kullback-Leibler distance (e.g., Belov & Armstrong, 2011; Burnham & Anderson, 2001).  

When one receives a “yes” answer to a question, Kullback-Leibler distance can be computed 

as: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]HpDHpDHpHpDHpDHp ¬¬×¬+× |log||log| 22 . (A12) 

For a “no” answer, it can be expressed as: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]HpDHpDHpHpDHpDHp ¬¬¬×¬¬+¬×¬ |log||log| 22 .(A13) 
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As with information gain, Kullback-Leibler distance also cannot be implemented with 

respect to a single hypothesis exactly because it implies a comparison between two distributions.  

Probability gain 

Whereas information gain is a measure of uncertainty reduction, probability gain is a 

measure of error reduction, that is, it measures the extent to which an answer reduces the probability 

of preferring an erroneous hypothesis. In other words, probability gain quantifies an answer’s 

usefulness in terms of how much it increases the probability of the correct hypothesis. Previous 

studies have found that error reduction guides human information gathering when participants learn 

environmental probabilities (Nelson et al., 2010) as well as attention learning (e.g., Kruschke, 

2001). The probability gain of a “yes” answer (the presence of a feature) when the tester evaluates 

the usefulness of the obtained evidence with respect to the whole constellation of hypotheses can be 

expressed as follows:  

( ) ( )[ ] ( ) ( )[ ]HpHpDHpDHp ¬−¬ ,max|,|max .     (A14) 

In the case of a “no” answer (i.e., of the absence of a feature), the probability gain is given 

by the following expression:  

( ) ( )[ ] ( ) ( )[ ]HpHpDHpDHp ¬−¬¬¬ ,max|,|max .     (A15) 

When the tester evaluates the usefulness of the obtained evidence with respect to her/his 

beliefs about a focal hypothesis, the probability gain of a “yes” answer is expressed as follows: 

( ) ( )HpDHp −| ,         (A16) 

where H is the focal hypothesis and D is the obtained evidence. The probability gain for a 

“no” answer is expressed as follows: 

( ) ( )HpDHp −¬| ,         (A17) 

where ¬D stands for the “no” answer. 

In other words, the probability gain reduces to an inductive confirmation measure whenever 

it is calculated with respect to a single hypothesis. Indeed, by adding the algebraic operator to its 
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formula, it is possible to quantify the decreases or increases in the degrees of belief in a focal 

hypothesis. In this form, probability gain is no longer a measure of error reduction. 

Impact 

This metric has been advanced independently in different studies. Wells and Lindsay (1980) 

called it “informativeness” (or “information gain”) in their Bayesian analysis of eyewitness lineup 

identifications and nonidentifications. They defined it as the absolute value of the difference 

between the prior probability of the focal hypothesis (e.g., the suspect is the criminal) and the 

posterior probability of the same hypothesis (e.g., the suspect is the criminal given an 

identification/a nonidentification). Accordingly, it measures the degree of revision of one’s beliefs 

required by new data. Klayman and Ha (1987) called it “impact” and “expected change in belief 

(E∆P)” (Klayman & Ha, 1987, p. 219) in their work on confirmation and disconfirmation in 

hypothesis testing. They used it as a measure for assessing the most informative test. Indeed, E∆P 

measures the absolute magnitude of changes in beliefs by taking into account both confirming and 

disconfirming evidence. Along the same lines, Nickerson (1996) used the term “impact” to indicate 

“the absolute value of an observation’s effect” (Nickerson, 1996, p. 20), whereby the effect of an 

observation is the difference between the posterior and the prior probability of a hypothesis. 

In the present contribution, we shall use the formula described in Nelson (2005). In 

particular, the impact of a “yes” answer can be expressed as follows: 

( ) ( ) ( ) ( ){ }HpDHpHpDHp ¬−¬+−× ||21 ,     (A18) 

whereas the impact of a “no” answer can be computed as: 

( ) ( ) ( ) ( ){ }HpDHpHpDHp ¬−¬¬+−¬× ||21 .     (A19) 

In the case of mutually exclusive and exhaustive hypotheses the formula reduces to:  

( ) ( )HpDHp −| ,         (A20) 

for a “yes” answer and to:  
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( ) ( )HpDHp −¬| ,         (A21) 

in the case of a “no” answer. Absolute values are not used when a tester is inquiring about a 

focal hypothesis so that the obtained values inform the tester about the direction of the change 

engendered by the evidence (i.e., toward confirmation of the focal hypothesis or toward its 

disconfirmation). 

Whenever the prior probabilities of the hypotheses under examination are equal the 

predictions of impact are identical to those of probability gain (e.g., Nelson, 2005, 2008; Rusconi & 

McKenzie, in press).  

Measures L and Z 

Parallel to the investigation of the psychological plausibility of OED models in information 

seeking (e.g., Edwards, 1965; Good & Card, 1971; Nelson, 2005, 2008; Nelson et al., 2010), 

philosophers of science and psychologists debated on the normative and descriptive adequacy of 

measures of confirmation or of evidential support (e.g., Carnap, 1950; Crupi et al., 2007; Fitelson, 

2001, 2006; Kemeny, 1953; Kemeny & Oppenheim, 1952; Mastropasqua et al., 2010; Popper, 

1954; Tentori et al., 2007). It should be noted that, within a probabilistic framework, measures of 

confirmation are distinct from posterior probabilities because they capture the degrees of change 

(i.e., increases or decreases) that occur in one’s initial beliefs and leads to the final confidence, that 

is, to posterior probabilities (e.g., Mastropasqua et al., 2010).  

Recent studies have shown that two metrics, namely, measures L and Z adequately describe 

human confirmation judgments with either ascertained or uncertain evidence (e.g., Crupi et al., 

2007; Mastropasqua et al., 2010; Tentori et al., 2007). Mathematically, measure L is strictly related 

to the log LR and best approximates intuitive judgments of confirmation with uncertain evidence 

(Mastropasqua et al., 2010).  
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When the tester evaluates the absolute change of beliefs engendered by the obtained 

evidence with respect to the whole constellation of hypotheses, the utility of a “yes” answer 

according to measure L can be expressed as: 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ⎭⎬

⎫

⎩
⎨
⎧

¬+¬¬−¬
¬+¬¬−¬

HpHpDHpDHpHpHpDHpDHp
HpHpDHpDHpHpHpDHpDHp

||||
,||||

max .(A22) 

In a similar way, the utility of a “no” answer can be computed as: 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ⎭⎬

⎫

⎩
⎨
⎧

¬+¬¬¬¬−¬¬¬
¬+¬¬¬¬−¬¬¬

HpHpDHpDHpHpHpDHpDHp
HpHpDHpDHpHpHpDHpDHp

||||
,||||

max . 

(A23) 

Whenever the tester considers the plausibility of a focal hypothesis, measure L can be 

implemented with the algebraic operator so that the value indicates the direction of belief change 

(i.e., toward hypothesis confirmation vs. hypothesis disconfirmation). In particular, the value of a 

“yes” answer can be expressed as follows: 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]HpHpDHpDHpHpHpDHpDHp ¬+¬¬−¬ |||| .       (A24) 

The value of a “no” answer can be computed as: 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]HpHpDHpDHpHpHpDHpDHp ¬+¬¬¬¬−¬¬¬ |||| . (A25) 

Measure Z has been advocated as theoretically appealing by Crupi et al. (2007) who found 

that it performed slightly but significantly better than L in describing human intuitions about 

confirmation with ascertained evidence. Measure Z defines the value of a “yes” answer with respect 

to the whole constellation of hypotheses as follows: 

If either ( ) ( )HpDHp ≥| or ( ) ( )HpDHp ¬≥¬ | : 

( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ }HpHpDHpHpHpDHp ¬−¬¬− |,|max  

otherwise:          (A26) 

( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ }HpHpDHpHpHpDHp ¬¬−¬− |,|max . 

The utility value of a “no” answer can be expressed as: 
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If either ( ) ( )HpDHp ≥¬|  or ( ) ( )HpDHp ¬≥¬¬ | : 

( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ }HpHpDHpHpHpDHp ¬−¬¬¬−¬ |,|max  

otherwise:          (A27) 

( ) ( )[ ] ( ) ( ) ( )[ ] ( ){ }HpHpDHpHpHpDHp ¬¬−¬¬−¬ |,|max . 

Whenever the tester evaluates a focal hypothesis, measure Z for a “yes” answer can be 

computed as: 

If ( ) ( )HpDHp ≥| : ( ) ( )[ ] ( )HpHpDHp ¬−|      (A28) 

If ( ) ( )HpDHp <| : ( ) ( )[ ] ( )HpHpDHp −| , 

while the value of a “no” answer can be expressed as follows: 

If ( ) ( )HpDHp ≥¬| : ( ) ( )[ ] ( )HpHpDHp ¬−¬|      (A29) 

If ( ) ( )HpDHp <¬| : ( ) ( )[ ] ( )HpHpDHp −¬| .
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Table 1  

 Main Properties of the Experiments  

 

 

Experiment Type of testing Type of evaluation Phrasing of the task requirement 

Experiment 1 single hypothesis propensity of evidence to 
decrease/increase beliefs 

How do you deem that the received answer 
(“YES”) [(“NO”)] decreases/increases the 

plausibility of the hypothesis that the 
encountered creature is a Glom [Fizo]? 

(mark a number from -3 to 3) 

Experiment 2 single hypothesis helpfulness of evidence 

How do you deem that the received answer 
(“YES”) [(“NO”)] is helpful for ascertaining 
the possibility that the encountered creature 

is a Glom [Fizo]? (mark a number from -3 to 
3) 

Experiment 3 multiple hypotheses helpfulness of evidence 

How do you deem that the received answer 
(“YES”) [(“NO”)] is helpful in 

distinguishing between the possibility that 
the encountered creature is a Glom and the 
possibility that it is a Fizo? (mark a number 

from -3 to 3) 

Additional 
Experiment multiple hypotheses propensity of evidence to 

decrease/increase beliefs 

How do you deem that the received answer 
(“YES”) [(“NO”)] decreases/increases the 

plausibility of the hypothesis that the 
encountered creature is a Glom or that the 

encountered creature is a Fizo? (mark a 
number from -3 to 3) 
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Table 2 

 Formal Properties of Experiments 1–2 

 

Answer Hypothe
sis 

Priors 
(%) 

Likeliho
ods (%) 

Bayesia
n 

Diagnost
icity 

Log10 
Diagnost

icity 
(deciban

s) 

Informat
ion Gain 

Kullback
-Leibler 
distance 

Probabil
ity Gain Impact L Z 

Glom 25 90 1.8 2.55 -.14 .07 .13 .13 .29 .17 yes 
Fizo 75 50 .56 -2.55 -.14 .07 -.12 -.12 -.29 -.16 
Glom 25 10 .2 -6.99 .48 .18 -.19 -.19 -.68 -.76 no 
Fizo 75 50 5 6.99 .48 .18 .19 .19 .68 .76 
Glom 25 75 5 6.99 -.14 .47 .38 .38 .67 .51 yes 
Fizo 75 15 .2 -6.99 -.14 .47 -.37 -.37 -.67 -.49 
Glom 25 25 .29 -5.31 .37 .12 -.16 -.16 -.54 -.64 no 
Fizo 75 85 3.4 5.31 .37 .12 .16 .16 .54 .64 
Glom 25 45 .53 -2.76 .2 .04 -.1 -.1 -.31 -.4 yes 
Fizo 75 85 1.89 2.76 .2 .04 .1 .1 .31 .4 
Glom 25 55 3.67 5.64 -.18 .29 .3 .3 .57 .4 no 
Fizo 75 15 .27 -5.64 -.18 .29 -.3 -.3 -.57 -.4 
Glom 25 22 .22 -6.49 .45 .16 -.18 -.18 -.63 -.72 yes Fizo 75 98 4.45 6.49 .45 .16 .18 .18 .63 .72 
Glom 25 78 39 15.91 .45 1.52 .68 .68 .95 .91 no Fizo 75 2 .03 -15.91 .45 1.52 -.68 -.68 -.95 -.91 
Glom 75 90 1.8 2.55 .18 .03 .09 .09 .27 .36 yes 
Fizo 25 50 .56 -2.55 .18 .03 -.09 -.09 -.27 -.36 
Glom 75 10 .2 -6.99 -.14 .47 -.37 -.37 -.67 -.49 no 
Fizo 25 50 5 6.99 -.14 .47 .38 .38 .67 .51 
Glom 75 75 5 6.99 .48 .18 .19 .19 .68 .76 yes 
Fizo 25 15 .2 -6.99 .48 .18 -.19 -.19 -.68 -.76 
Glom 75 25 .29 -5.31 -.19 .26 -.28 -.28 -.54 -.37 no 
Fizo 25 85 3.4 5.31 -.19 .26 .28 .28 .54 .37 
Glom 75 45 .53 -2.76 -.15 .07 -.14 -.14 -.31 -.19 yes 
Fizo 25 85 1.89 2.76 -.15 .07 .14 .14 .31 .19 
Glom 75 55 3.67 5.64 .41 .14 .17 .17 .59 .68 no 
Fizo 25 15 .27 -5.64 .41 .14 -.17 -.17 -.59 -.68 
Glom 75 22 .22 -6.49 -.16 .4 -.35 -.35 -.64 -.47 yes Fizo 25 98 4.45 6.49 -.16 .4 .35 .35 .64 .47 
Glom 75 78 39 15.91 .73 .35 .24 .24 .94 .96 no Fizo 25 2 .03 -15.91 .73 .35 -.24 -.24 -.94 -.96 
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Table 3 

Experiment 1: Parameters of the Fixed Effects Estimated by Means of Linear Mixed-Effects Models, their Statistical Significance, and the AIC and 

BIC Values of the Eight Competing Models 

 

Note. AICAICAIC ii min)( −=Δ ; BICBICBIC ii min)( −=Δ . 

 

Fixed Effects Estimate 
Std. 

Error 

t 

value 
MCMCmean

95%  

Highest Posterior  

Density Interval 

pMCMC AICi 
∆i 

(AIC) 

Akaike 

weights 
BICi 

∆i 

(BIC) 

Schwarz  

weights 

Bayesian Diagnosticity .08 .03 2.99 .08 [.04, .12] .0002 2689 76 .0000 2716 76 .0000 

Log10 Diagnosticity .18 .02 11.35 .18 [.15, .21] .0001 2650 37 .0000 2677 37 .0000 

Information Gain -.27 .90 -.30 -.28 [-1.50, 1.00] .6574 2687 74 .0000 2714 74 .0000 

Kullback-Leibler distance -.40 .79 -.50 -.40 [-1.52, .70] .4750 2690 77 .0000 2713 73 .0000 

Probability Gain 4.55 .49 9.32 4.54 [3.68, 5.42] .0001 2656 43 .0000 2684 44 .0000 

Impact 4.55 .49 9.32 4.53 [3.65, 5.43] .0001 2656 43 .0000 2684 44 .0000 

Measure L 2.30 .16 14.64 2.30 [2.00, 2.61] .0001 2641 28 .0000 2668 28 .0000 

Measure Z 2.39 .16 14.74 2.39 [2.08, 2.71] .0001 2613 0 1.0000 2640 0 1.0000 
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Table 4 

 Experiment 1: Normalized Probabilities and Evidence Ratios of Akaike and Schwarz Weights for the Competing Models  

 

 
Contrasts 

Evidence ratio of 

Akaike weights 

Normalized 

probability of 

Akaike weights 

Evidence ratio of 

Schwarz  

weights 

Normalized 

probability of 

Schwarz  

weights 

Measure Z vs. Measure L 1202604.28 1.00 1202604.28 1.00 

Measure Z vs. Bayesian 

Diagnosticity 
31855931757113800.00 1.00 31855931757113800.00 1.00 

Measure Z vs. Log10 Diagnosticity 108254987.75 1.00 108254987.75 1.00 

Measure Z vs. Information Gain 11719142372802600.00 1.00 11719142372802600.00 1.00 

Measure Z vs. Kullback-Leibler 

distance 
52521552285925200.00 1.00 7108019154642240.00 1.00 

Measure Z vs. Probability Gain 2174359553.58 1.00 3584912846.13 1.00 

Measure Z vs. Impact 2174359553.58 1.00 3584912846.13 1.00 

Measures L and Z vs. OED models 98451821.21 1.00 102089408.88 1.00 
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Table 5 

Experiment 2: Parameters of the Fixed Effects Estimated by Means of Linear Mixed-Effects Models, their Statistical Significance, and the AIC and 

BIC Values of the Eight Competing Models 

 

Note. AICAICAIC ii min)( −=Δ ; BICBICBIC ii min)( −=Δ .

Fixed Effects Estimate 
Std. 

Error

t 

value
MCMCmean

95%  

Highest Posterior  

Density Interval 

pMCMC AICi 
∆i 

(AIC)

Akaike 

weights
BICi 

∆i 

(BIC)

Schwarz  

weights 

Bayesian Diagnosticity .04 .01 3.01 .04 [.01, .06] .0022 2732 22 .0000 2754 21 .0000 

Log10 Diagnosticity .06 .01 4.83 .06 [.04, .09] .0001 2729 19 .0001 2752 19 .0001 

Information Gain .21 .43 .50 .20 [-.56, 1.01] .6042 2730 20 .0000 2753 20 .0000 

Kullback-Leibler distance .38 .38 1.01 .38 [-.32, 1.07] .2742 2729 19 .0001 2752 19 .0001 

Probability Gain 1.67 .35 4.70 1.64 [.97, 2.31] .0001 2723 13 .0015 2746 13 .0015 

Impact 1.67 .35 4.70 1.64 [.99, 2.35] .0001 2723 13 .0015 2746 13 .0015 

Measure L .87 .15 5.94 .87 [.60, 1.15] .0001 2718 8 .0179 2741 8 .0179 

Measure Z .91 .15 5.88 .90 [.62, 1.22] .0001 2710 0 .9789 2733 0 .9789 
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Table 6 

 Experiment 2: Normalized Probabilities and Evidence Ratios of Akaike and Schwarz Weights for 

the Competing Models  

 

 

 

 

Contrasts 
Evidence ratio of 

Akaike weights 

Normalized 

probability of 

Akaike 

weights 

Evidence ratio of 

Schwarz  

weights 

Normalized 

probability 

of Schwarz  

weights 

Measure Z vs. Measure L 54.60 .98 54.60 .98 

Measure Z vs. Bayesian 

Diagnosticity 
59874.14 1.00 36315.50 1.00 

Measure Z vs. Log10 

Diagnosticity 
13359.73 1.00 13359.73 1.00 

Measure Z vs. Information Gain 22026.47 1.00 22026.47 1.00 

Measure Z vs. Kullback-Leibler 

distance 
13359.73 1.00 13359.73 1.00 

Measure Z vs. Probability Gain 665.14 1.00 665.14 1.00 

Measure Z vs. Impact 665.14 1.00 665.14 1.00 

Measures Z and L vs. OED 

models 
316.38 1.00 315.32 1.00 
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Table 7 

 Formal Properties of Experiment 3 and of the Additional Experiment 

 

 

Answer Hypothe
sis 

Priors 
(%) 

Likeliho
ods (%) 

Bayesia
n 

Diagnost
icity 

Log10 
Diagnost

icity 
(deciban

s) 

Informat
ion Gain 

Kullback
-Leibler 
distance 

Probabil
ity Gain Impact L Z 

Glom 25 90 yes 
Fizo 75 50 

1.8 2.55 -.14 .07 -.12 .13 .29 .17 

Glom 25 10 no 
Fizo 75 50 

5 6.99 .48 .18 .19 .19 .68 .76 

Glom 25 75 yes 
Fizo 75 15 

5 6.99 -.14 .47 -.12 .38 .67 .51 

Glom 25 25 no 
Fizo 75 85 

3.4 5.31 .37 .12 .16 .16 .54 .64 

Glom 25 45 yes 
Fizo 75 85 

1.89 2.76 .2 .04 .1 .1 .31 .4 

Glom 25 55 no 
Fizo 75 15 

3.67 5.64 -.18 .29 -.2 .3 .57 .4 

Glom 25 22 yes Fizo 75 98 4.45 6.49 .45 .16 .18 .18 .63 .72 

Glom 25 78 no Fizo 75 2 39 15.91 .45 1.52 .18 .68 .95 .91 

Glom 75 90 yes 
Fizo 25 50 

1.8 2.55 .18 .03 .09 .09 .27 .36 

Glom 75 10 no 
Fizo 25 50 

5 6.99 -.14 .47 -.12 .38 .67 .51 

Glom 75 75 yes 
Fizo 25 15 

5 6.99 .48 .18 .19 .19 .68 .76 

Glom 75 25 no 
Fizo 25 85 

3.4 5.31 -.19 .26 -.22 .28 .54 .37 

Glom 75 45 yes 
Fizo 25 85 

1.89 2.76 -.15 .07 -.14 .14 .31 .19 

Glom 75 55 no 
Fizo 25 15 

3.67 5.64 .41 .14 .17 .17 .59 .68 

Glom 75 22 yes Fizo 25 98 4.45 6.49 -.16 .40 -.15 .35 .64 .47 

Glom 75 78 no Fizo 25 2 39 15.91 .73 .35 .24 .24 .94 .96 
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Table 8 

Experiment 3: Parameters of the Fixed Effects Estimated by Means of Linear Mixed-Effects Models, their Statistical Significance, and the AIC and 

BIC Values of the Eight Competing Models 

 

Note. AICAICAIC ii min)( −=Δ ; BICBICBIC ii min)( −=Δ .

Fixed Effects Estimate 
Std. 

Error 

t 

value 
MCMCmean

95%  

Highest Posterior  

Density Interval 

pMCMC AICi 
∆i 

(AIC) 

Akaike 

weights 
BICi 

∆i 

(BIC) 

Schwarz  

weights 

Bayesian Diagnosticity .03 .01 4.19 .03 [.01, .04] .0001 2725 10 .0051 2753 11 .0032 

Log10 Diagnosticity .08 .02 4.39 .08 [.04, .11] .0001 2733 18 .0001 2761 19 .0001 

Information Gain .85 .24 3.49 .85 [.39, 1.33] .0008 2721 6 .0380 2749 7 .0237 

Kullback-Leibler distance .61 .23 2.63 .61 [.19, 1.09] .0088 2730 15 .0004 2758 16 .0003 

Probability Gain 1.45 .48 3.05 1.46 [.50, 2.32] .0018 2722 7 .0230 2750 8 .0143 

Impact 1.09 .58 1.87 1.09 [.00, 2.24] .0522 2729 14 .0007 2757 15 .0004 

Measure L 1.31 .37 3.52 1.32 [.56, 2.03] .0008 2718 3 .1701 2745 3 .1748 

Measure Z 1.29 .31 4.17 1.28 [.70, 1.89] .0001 2715 0 .7625 2742 0 .7833 



BAYESIAN MODELS OF EVIDENCE EVALUATION 61 

 

Table 9 

 Experiment 3: Normalized Probabilities and Evidence Ratios of Akaike and Schwarz Weights for 

the Eight Competing Models  

 

 

Contrasts 

Evidence ratio 

of Akaike 

weights 

Normalized 

probability of 

Akaike weights 

Evidence ratio 

of Schwarz  

weights 

Normalized 

probability of 

Schwarz  

weights 

Measure Z vs. Measure L 4.48 .82 4.48 .82 

Measure Z vs.  Bayesian 

Diagnosticity 
148.41 .99 244.69 1.00 

Measure Z vs. Log10 Diagnosticity 8103.08 1.00 13359.73 1.00 

Measure Z vs. Information Gain 20.09 .95 33.12 .97 

Measure Z vs. Kullback-Leibler 

distance 
1808.04 1.00 2980.96 1.00 

Measure Z vs. Probability Gain 33.12 .97 54.60 .98 

Measure Z vs. Impact 1096.63 1.00 1808.04 1.00 

Measures L and Z vs. OED models 13.85 .93 22.84 .96 
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Figure 1. Experiment 1: Scatterplots illustrating the relationships between participants’ mean ratings (averaged across the 32 cells of the 

experimental design) and the values predicted by the competing models (i.e., the six OED models and L and Z). The mean ratings are plotted along 

the Y-axis of each scatter plot, whereas the values predicted by the models are plotted along the X-axis. Each point in the scatterplots represents one 

of the 32 cells of the experimental design.  
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Figure 2. Experiment 2: Scatterplots illustrating the relationships between participants’ mean ratings (averaged across the 32 cells of the 

experimental design) and the values predicted by the competing models (i.e., the six OED models and L and Z). The mean ratings are plotted along 

the Y-axis of each scatter plot, whereas the values predicted by the models are plotted along the X-axis. Each point in the scatterplots represents one 

of the 32 cells of the experimental design. 
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Figure 3. Experiment 3: Scatterplots illustrating the relationships between participants’ mean ratings (averaged across the 32 cells of the 

experimental design) and the values predicted by the competing models (i.e., the six OED models and L and Z). The mean ratings are plotted along 

the Y-axis of each scatter plot, whereas the values predicted by the models are plotted along the X-axis. Each point in the scatterplots represents one 

of the 32 cells of the experimental design. 
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Supplementary materials 

Table 1 

The Sample Characteristics 

 Experiment 1 Experiment 2 Experiment 3 Additional 
Experiment 

N 95 92 102 92 
Females 48 72 51 68 
Males 47 20 50 23 

NA   1 1 
Mean age (SD, 

range) 
22.33 (2.14, 19-

29) 20.6 (2.02, 18-33) 21.63 (1.99, 18-
29) 

20.93 (1.95, 18-
28) 

Nationality: 
Italian 89 85 96 89 

Italian and 
French    1 

Albanian 1  1  
American 1    
Bulgarian  2   
Burmese   1  
Egyptian   1  
German  1 1  
Japanese 1    
Peruvian 1  1  

Polish  1   
Romanian  2   
Spanish  1   

NA 2  1 2 
Course of study: 

Biology 5  1 1 

Biostatistics 2    
Biotechnology  2 2 3 

Chemistry  1 3  
Communication 

and society 1    

Communication 
and psychology 1 24 6 26 

Computer science 7 3 7 1 
Economics 31 3 26 1 
Engineering 2    

Environmental 
sciences 1 3 3  

Geology   2 2 
Goldsmith 
sciences 1    

Human sciences 
and education 2 13 10 15 

Intercultural 
communication  2 5 3 



BAYESIAN MODELS OF EVIDENCE EVALUATION 66 

 

Law 2 2 4 1 
Materials 

engineering 1    

Materials science 4 1 1 1 
Mathematics  2 4  

Medicine    1 
Motor sciences   1  
Mathematics, 
physics and 

natural sciences 
2  1  

Nursing 1    
Optics and 
optometry 2 3   

Psychology 12 25 17 25 
Physics 5 4 6 2 

Physiotherapy    1 
Science of 

tourism  1   

Sociology 4 2  3 
Social services 2 1  1 

Statistical 
sciences 2   2 

Theory and 
technology of 

communication 
   1 

Tourism, territory 
and local 

development 
3    

NA   3 2 
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Table 2 

Correlations among the Theoretical Utility Values across the 32 Conditions of Experiments 1–2 

 

 

Note. ** the correlation is significant at the level .01 (two-tailed). 

 1 2 3 4 5 6 7 

1. Bayesian Diagnosticity        

2. Log10Diagnosticity .68**       

3. Information Gain .34 .00      

4.  Kullback-Leibler distance .46** .00 .12     

5. Probability Gain .56** .92** -.00 .00    

6. Impact .56** .92** -.00 .00 1**   

7. Measure L .56** .97** .00 .00 .93** .93**  

8. Measure Z .56** .96** -.00 .00 .87** .87** .98** 
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Table 3 

 The Mean Ratings (the Standard Errors of the Mean, SEM, in Parentheses) Provided by 

Participants in the Experiments 

 

Answer Hypothesis Priors 
(%) 

Likelihoods 
(%) 

Mean ratings 
(SEM) – 

Experiment 1 

Mean ratings 
(SEM) – 

Experiment 2 

Mean ratings 
(SEM) – 

Experiment 3 

Mean ratings 
(SEM) – 

Additional 
Experiment 

Glom 25 90 1.48 (.31) 1.29 (.32) .88 (.36) .84 (.24) yes Fizo 75 50 -.46 (.32) -.08 (.32) .69 (.29) .61 (.30) 
Glom 25 10 -1.43 (.41) .13 (.46) .42 (.4) .45 (.35) no Fizo 75 50 .92 (.31) .22 (.29) .84 (.24) .57 (.39) 
Glom 25 75 1.61 (.19) 1.46 (.28) 1.12 (.25) .59 (.28) yes Fizo 75 15 -1.83 (.17) .29 (.33) .65 (.35) .61 (.31) 
Glom 25 25 -1.30 (.30) .13 (.41) 1.08 (.35) .68 (.35) no Fizo 75 85 1.83 (.26) 1.13 (.28) 1.28 (.33) 1.26 (.32) 
Glom 25 45 -.57 (.34) .13 (.36) .68 (.29) .77 (.25) yes Fizo 75 85 1.41 (.27) 1.13 (.29) .69 (.28) 1.13 (.28) 
Glom 25 55 .13 (.33) .75 (.32) .28 (.37) .36 (.27) no Fizo 75 15 -1.00 (.34) .42 (.35) .64 (.35) .57 (.29) 
Glom 25 22 -1.48 (.44) .17 (.45) 1.44 (.35) .86 (.43) yes Fizo 75 98 2.26 (.33) 1.96 (.29) 1.96 (.22) 2.00 (.33) 
Glom 25 78 1.87 (.32) 1.46 (.34) 1.76 (.27) 1.23 (.29) no Fizo 75 2 -2.38 (.24) .96 (.48) 1.92 (.26) 1.64 (.35) 
Glom 75 90 1.96 (.24) 1.73 (.21) 1.24 (.33) 1.38 (.29) yes Fizo 25 50 -.44 (.27) -.29 (.33) .48 (.33) 1.39 (.19) 
Glom 75 10 -1.26 (.32) -.23 (.37) .4 (.33) .79 (.28) no Fizo 25 50 .68 (.31) .55 (.32) .58 (.27) .87 (.30) 
Glom 75 75 1.78 (.21) 1.59 (.24) 1.28 (.25) 1.58 (.22) yes Fizo 25 15 -1.76 (.28) -.38 (.38) 1.04 (.24) 1.30 (.32) 
Glom 75 25 -.74 (.35) .50 (.33) .84 (.26) .83 (.32) no Fizo 25 85 1.28 (.37) 1.05 (.35) 1.04 (.26) 1.57 (.23) 
Glom 75 45 -.39 (.26) .10 (.28) .42 (.26) .38 (.30) yes Fizo 25 85 1.64 (.22) .95 (.33) .5 (.26) 1.00 (.23) 
Glom 75 55 1.04 (.26) 1.10 (.26) .56 (.31) 1.29 (.27) no Fizo 25 15 -1.12 (.39) -.23 (.39) .77 (.26) .43 (.31) 
Glom 75 22 -.96 (.37) .14 (.42) 1.12 (.36) 1.00 (.38) yes Fizo 25 98 2.32 (.16) 2.18 (.26) 1.42 (.3) 1.57 (.18) 
Glom 75 78 2.26 (.27) 2.05 (.29) 1.76 (.31) 1.71 (.39) no Fizo 25 2 -1.88 (.38) .45 (.51) 1.62 (.29) 1.70 (.36) 
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Table 4 

Correlations among the Theoretical Utility Values across the 32 Conditions of Experiment 3 and 

the Additional Experiment 

 

 

Note. ** the correlation is significant at the level .01 (two-tailed) * the correlation is significant at 

the level .05 (two-tailed). 

 1 2 3 4 5 6 7 

1. Bayesian Diagnosticity        

2. Log10Diagnosticity .95**       

3. Information Gain .54* .55*      

4.  Kullback-Leibler distance .72** .76** .12     

5. Probability Gain .43 .43 .98** .08    

6. Impact .60* .69** -.08 .96** -.13   

7. Measure L .76** .93** .49 .69** .37 .71**  

8. Measure Z .69** .82** .85** .47 .78** .38 .87** 
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Table 5 

Additional Experiment: Parameters of the Fixed Effects Estimated by Means of Linear Mixed-Effects Models, their Statistical Significance, and the 

AIC and BIC Values of the Eight Competing Models 

 

Note. AICAICAIC ii min)( −=Δ ; BICBICBIC ii min)( −=Δ . 

Fixed Effects Estimate 
Std. 

Error

t 

value
MCMCmean

95%  

Highest Posterior  

Density Interval 

pMCMC AICi 
∆i 

(AIC)

Akaike 

weights
BICi 

∆i 

(BIC)

Schwarz  

weights 

Bayesian Diagnosticity .02 .01 2.69 .02 [.00, .03] .0080 2545 15 .0002 2572 14 .0003 

Log10 Diagnosticity .05 .02 2.43 .05 [.01, .08] .0140 2543 13 .0007 2571 13 .0005 

Information Gain .62 .23 2.70 .62 [.17, 1.06] .0070 2531 1 .2690 2558 0 .3281 

Kullback-Leibler distance .27 .23 1.19 .26 [-.18, .68] .2310 2540 10 .0030 2567 9 .0036 

Probability Gain 1.08 .44 2.45 1.07 [.22, 1.93] .0166 2530 0 .4436 2558 0 .3281 

Impact .34 .55 .62 .34 [-.76, 1.37] .5242 2542 12 .0011 2569 11 .0013 

Measure L .66 .38 1.74 .65 [-.07, 1.38] .0770 2537 7 .0134 2565 7 .0099 

Measure Z .78 .31 2.49 .78 [.18, 1.39] .0146 2531 1 .2690 2558 0 .3281 
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Table 6 

 Additional Experiment: Normalized Probabilities and Evidence Ratios of Akaike and Schwarz 

Weights for the Competing Models  

Contrasts 
Evidence ratio of 

Akaike weights 

Normalized 

probability of 

Akaike 

weights 

Evidence ratio of 

Schwarz  

weights 

Normalized 

probability 

of Schwarz  

weights 

Measure Z vs. Measure L 20.09 .95 33.12 .97 

Measure Z vs. Bayesian 

Diagnosticity 
1096.63 1.00 1096.63 1.00 

Measure Z vs. Log10 

Diagnosticity 
403.43 1.00 665.14 1.00 

Measure Z vs. Information Gain 1.00 .50 1.00 .50 

Measure Z vs. Kullback-Leibler 

distance 
90.02 .99 90.02 .99 

Measure Z vs. Probability Gain .61 .38 1.00 .50 

Measure Z vs. Impact 244.69 1.00 244.69 1.00 

Measures L and Z vs. OED 

models 
.39 .28 .51 .34 
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Figure 1. 
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Figure 2. Additional Experiment: Scatterplots illustrating the relationships between participants’ mean ratings (averaged across the 32 cells of the 

experimental design) and the values predicted by the competing models (i.e., the six OED models and L and Z). The mean ratings are plotted along 

the Y-axis of each scatter plot, whereas the values predicted by the models are plotted along the X-axis. Each point in the scatterplots represents one 

of the 32 cells of the experimental design. 
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The Original Italian Instructions Given to Participants in Experiment 1. Variations Between 

Experiments are in Italics Within Round Brackets, While Variations Across the Experimental 

Groups (Within the Same Experiment) are Within Square Brackets. We Provide Here Only One of 

the Eight Feature-Answer Combinations that We Used. 

Ti chiediamo di leggere attentamente lo scenario e le istruzioni che troverai nelle prossime pagine. 

Volta pagina. 

Immagina di viaggiare verso un pianeta, chiamato Vuma. Su questo pianeta esistono due e soltanto 

due tipi di creature: i Glom e i Fizo. In particolare, il 25% [75%] degli abitanti di Vuma è Glom, 

mentre il 75% [25%] è Fizo. Dal solo aspetto esterno non è possibile distinguere un Glom da un 

Fizo. Ti viene chiesto di identificare otto creature diverse che incontri per caso sul pianeta. Glom e 

Fizo posseggono alcune caratteristiche. Ti verrà riferito (in percentuale) quanti Glom e Fizo hanno 

queste caratteristiche. Sai di poter porre delle domande alle creature che incontri per stabilire se 

abbiano o meno una certa caratteristica. Inoltre, sai che entrambi i tipi di creature non mentono mai 

in risposta a una domanda. 

Il tuo compito è, per ogni creatura incontrata, di: 

- indicare quanto ritieni che la risposta ricevuta a una domanda su una determinata 

caratteristica diminuisca/aumenti la plausibilità dell’ipotesi che la creatura incontrata sia 

un Glom [Fizo] usando una scala da -3 a 3, in cui -3 = diminuisce decisamente e 3 = 

aumenta decisamente (Experiment 2: ti aiuti ad accertarti della possibilità che la creatura 

incontrata sia un Glom [Fizo] usando una scala da -3 a 3, in cui -3 = decisamente inutile e 

3 = decisamente utile / Experiment 3: ti aiuti a distinguere tra la possibilità che la creatura 

incontrata sia un Glom e la possibilità che sia un Fizo usando una scala da -3 a 3, in cui -3 

= decisamente inutile e 3 = decisamente utile / Additional Experiment: diminuisca/aumenti 

la plausibilità dell’ipotesi che la creatura incontrata sia un Glom o che la creatura 

incontrata sia un Fizo usando una scala da -3 a 3, in cui -3 = diminuisce decisamente e 3 = 

aumenta decisamente); 
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- indicare, su una scala da 0 a 100, quanto ritieni probabile che la creatura incontrata sia un 

Glom [Fizo]. 

Volta pagina. 
Di seguito ti vengono fornite le percentuali di Glom e Fizo sul pianeta Vuma:  

Glom  25% [75%] 

Fizo  75% [25%] 

Nella tabella sottostante ti vengono fornite le percentuali di Glom e Fizo che hanno e che non hanno 

le branchie: 

 Hanno le branchie Non hanno le branchie 

Glom 90% 10% 

Fizo 50% 50% 

 

Immagina di trovarti di fronte una creatura e di rivolgerle una domanda. Alla creatura che incontri 

chiedi: Hai le branchie? 

La creatura ti risponde: NO. 

 Quanto ritieni che la risposta ricevuta (“NO”) diminuisca/aumenti la plausibilità dell’ipotesi che la 

creatura incontrata sia un Glom [Fizo] (Experiment 2: sia d’aiuto per accertarsi della possibilità 

che la creatura incontrata sia un Glom [Fizo] / Experiment 3: sia d’aiuto per distinguere tra la 

possibilità che la creatura incontrata sia un Glom e la possibilità che sia un Fizo / Additional 

Experiment: diminuisca/aumenti la plausibilità dell’ipotesi che la creatura incontrata sia un Glom 

o che la creatura incontrata sia un Fizo)? (segna un numero da -3 a 3) 

-3 -2 -1 0 1 2 3 
Experiment 1 
and Additional 
Experiment: 
diminuisce 

decisamente 
(Experiment 2 

and 3:  
decisamente 

inutile)      

Experiment 1 
and Additional 
Experiment: 

aumenta 
decisamente 
(Experiment 2 

and 3:  
decisamente 

utile) 
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Quanto è probabile che la creatura incontrata sia un Glom [Fizo]? (scrivi nello spazio sottostante un 

numero da 0 a 100) 

   

Volta pagina. 

Nel giudicare, negli otto casi presentati, quanto la risposta ricevuta diminuisse/aumentasse la 

plausibilità dell’ipotesi che la creatura incontrata fosse un Glom [Fizo] (Experiment 2: quanto la 

risposta ricevuta fosse d’aiuto per accertarsi della possibilità che la creatura incontrata fosse un 

Glom [Fizo] / Experiment 3: quanto la risposta ricevuta fosse d’aiuto per distinguere tra la 

possibilità che la creatura incontrata fosse un Glom e la possibilità che fosse un Fizo / Additional 

Experiment: quanto la risposta ricevuta diminuisse/aumentasse la plausibilità dell’ipotesi che la 

creatura incontrata fosse un Glom o che la creatura incontrata fosse un Fizo) (primo giudizio), 

quanto hai considerato l’informazione relativa alle percentuali di Glom e Fizo sul pianeta Vuma 

(rispettivamente 25% [75%] e 75% [25%])? (segna un numero da 1 a 7) 

 

 

Nello stimare, negli otto casi presentati, la probabilità che la creatura incontrata fosse un Glom 

[Fizo] (secondo giudizio), quanto hai considerato l’informazione relativa alle percentuali di Glom e 

Fizo sul pianeta Vuma (rispettivamente 25% [75%] e 75% [25%])? (segna un numero da 1 a 7) 

 

   

Di seguito puoi scrivere eventuali commenti riguardanti questo studio. 

Ti chiediamo ora qualche informazione personale. 

Genere:    M   F 

Età: 

Nazionalità: 

Corso di studi:  

GRAZIE PER AVER PARTECIPATO! 

1 2 3 4 5 6 7 
poco      molto 

1 2 3 4 5 6 7 
poco      molto 


