45 research outputs found

    Concentrations of azithromycin in tonsillar and/or adenoid tissue from paediatric patients

    Get PDF
    Azithromycin levels in tonsillar and/or adenoid tissue were determined in children (1.6-7.5 years old) who were scheduled for surgical removal of their tonsils and/or adenoids. The children received azithromycin oral suspension lOmg/kg once daily for 3 days. Tissue samples were obtained during surgery 1 (n = 4), 2 (n = 5), 4 (n = 6), or 8 (n = 5) days after the last dose of azithromycin. Serum samples were also obtained from four children in each of these groups at the time of surgery. Mean tissue concentrations of azithromycin were 10.33 ± 3.01, 7.21 ± 4.04, 9.30 ± 3.74 and 1.49 ± 0.48 mg/kg, respectively, 1, 2, 4 and 8 days after the last dose. At the corresponding times, serum concentrations were markedly lower: 47.25 ± 19 19, 14.00 ± 8.45, 8.00 ± 2.16 and <4 μg/L, respectively. The mean tissue:serum concentration ratios were, 227 ± 54, 547 ± 184 and 956 ± 355, respectively, 1, 2 and 4 days after treatment. No adverse events attributable to azithromycin were observed in any of the 23 children who had received at least one dose of azithromycin. The study shows that levels of azithromycin in tonsillar and adenoid tissue were consistently higher than in serum and remained elevated up to 8 days after the end of dosing, supporting the use of a short-course (3-day), once-daily regimen of azithromycin in the treatment of upper respiratory tract infection

    Concentrations of azithromycin in tonsilar and/or adenoid tissue from paediatric patients.

    Get PDF
    Azithromycin levels in tonsillar and/or adenoid tissue were determined in children (1.6-7.5 years old) who were scheduled for surgical removal of their tonsils and/or adenoids. The children received azithromycin oral suspension 10 mg/kg once daily for 3 days. Tissue samples were obtained during surgery 1 (n = 4), 2 (n = 5), 4 (n = 6), or 8 (n = 5) days after the last dose of azithromycin. Serum samples were also obtained from four children in each of these groups at the time of surgery. Mean tissue concentrations of azithromycin were 10.33 +/- 3.01, 7.21 +/- 4.04, 9.30 +/- 3.74 and 1.49 +/- 0.48 mg/kg, respectively, 1, 2, 4 and 8 days after the last dose. At the corresponding times, serum concentrations were markedly lower: 47.25 +/- 19. 19, 14.00 +/- 8.45, 8.00 +/- 2.16 and &lt; 4 micrograms/L, respectively. The mean tissue:serum concentration ratios were, 227 +/- 54, 547 +/- 184 and 956 +/- 355, respectively, 1, 2 and 4 days after treatment. No adverse events attributable to azithromycin were observed in any of the 23 children who had received at least one dose of azithromycin. The study shows that levels of azithromycin in tonsillar and adenoid tissue were consistently higher than in serum and remained elevated up to 8 days after the end of dosing, supporting the use of a short-course (3-day), once-daily regimen of azithromycin in the treatment of upper respiratory tract infections

    Predictive value of clinical and laboratory features for the main febrile diseases in children living in Tanzania: A prospective observational study.

    Get PDF
    To construct evidence-based guidelines for management of febrile illness, it is essential to identify clinical predictors for the main causes of fever, either to diagnose the disease when no laboratory test is available or to better target testing when a test is available. The objective was to investigate clinical predictors of several diseases in a cohort of febrile children attending outpatient clinics in Tanzania, whose diagnoses have been established after extensive clinical and laboratory workup. From April to December 2008, 1005 consecutive children aged 2 months to 10 years with temperature ≥38°C attending two outpatient clinics in Dar es Salaam were included. Demographic characteristics, symptoms and signs, comorbidities, full blood count and liver enzyme level were investigated by bi- and multi-variate analyses (Chan, et al., 2008). To evaluate accuracy of combined predictors to construct algorithms, classification and regression tree (CART) analyses were also performed. 62 variables were studied. Between 4 and 15 significant predictors to rule in (aLR+&gt;1) or rule out (aLR+&lt;1) the disease were found in the multivariate analysis for the 7 more frequent outcomes. For malaria, the strongest predictor was temperature ≥40°C (aLR+8.4, 95%CI 4.7-15), for typhoid abdominal tenderness (5.9,2.5-11), for urinary tract infection (UTI) age ≥3 years (0.20,0-0.50), for radiological pneumonia abnormal chest auscultation (4.3,2.8-6.1), for acute HHV6 infection dehydration (0.18,0-0.75), for bacterial disease (any type) chest indrawing (19,8.2-60) and for viral disease (any type) jaundice (0.28,0.16-0.41). Other clinically relevant and easy to assess predictors were also found: malaria could be ruled in by recent travel, typhoid by jaundice, radiological pneumonia by very fast breathing and UTI by fever duration of ≥4 days. The CART model for malaria included temperature, travel, jaundice and hepatomegaly (sensitivity 80%, specificity 64%); typhoid: age ≥2 years, jaundice, abdominal tenderness and adenopathy (46%,93%); UTI: age &lt;2 years, temperature ≥40°C, low weight and pale nails (20%,96%); radiological pneumonia: very fast breathing, chest indrawing and leukocytosis (38%,97%); acute HHV6 infection: less than 2 years old, (no) dehydration, (no) jaundice and (no) rash (86%,51%); bacterial disease: chest indrawing, chronic condition, temperature ≥39.7°c and fever duration &gt;3 days (45%,83%); viral disease: runny nose, cough and age &lt;2 years (68%,76%). A better understanding of the relative performance of these predictors might be of great help for clinicians to be able to better decide when to test, treat, refer or simply observe a sick child, in order to decrease morbidity and mortality, but also to avoid unnecessary antimicrobial prescription. These predictors have been used to construct a new algorithm for the management of childhood illnesses called ALMANACH

    Beyond malaria--causes of fever in outpatient Tanzanian children.

    Get PDF
    BACKGROUND: As the incidence of malaria diminishes, a better understanding of nonmalarial fever is important for effective management of illness in children. In this study, we explored the spectrum of causes of fever in African children. METHODS: We recruited children younger than 10 years of age with a temperature of 38°C or higher at two outpatient clinics--one rural and one urban--in Tanzania. Medical histories were obtained and clinical examinations conducted by means of systematic procedures. Blood and nasopharyngeal specimens were collected to perform rapid diagnostic tests, serologic tests, culture, and molecular tests for potential pathogens causing acute fever. Final diagnoses were determined with the use of algorithms and a set of prespecified criteria. RESULTS: Analyses of data derived from clinical presentation and from 25,743 laboratory investigations yielded 1232 diagnoses. Of 1005 children (22.6% of whom had multiple diagnoses), 62.2% had an acute respiratory infection; 5.0% of these infections were radiologically confirmed pneumonia. A systemic bacterial, viral, or parasitic infection other than malaria or typhoid fever was found in 13.3% of children, nasopharyngeal viral infection (without respiratory symptoms or signs) in 11.9%, malaria in 10.5%, gastroenteritis in 10.3%, urinary tract infection in 5.9%, typhoid fever in 3.7%, skin or mucosal infection in 1.5%, and meningitis in 0.2%. The cause of fever was undetermined in 3.2% of the children. A total of 70.5% of the children had viral disease, 22.0% had bacterial disease, and 10.9% had parasitic disease. CONCLUSIONS: These results provide a description of the numerous causes of fever in African children in two representative settings. Evidence of a viral process was found more commonly than evidence of a bacterial or parasitic process. (Funded by the Swiss National Science Foundation and others.)

    Elements in the Canine Distemper Virus M 3′ UTR Contribute to Control of Replication Efficiency and Virulence

    Get PDF
    Canine distemper virus (CDV) is a negative-sense, single-stranded RNA virus within the genus Morbillivirus and the family Paramyxoviridae. The Morbillivirus genome is composed of six transcriptional units that are separated by untranslated regions (UTRs), which are relatively uniform in length, with the exception of the UTR between the matrix (M) and fusion (F) genes. This UTR is at least three times longer and in the case of CDV also highly variable. Exchange of the M-F region between different CDV strains did not affect virulence or disease phenotype, demonstrating that this region is functionally interchangeable. Viruses carrying the deletions in the M 3′ UTR replicated more efficiently, which correlated with a reduction of virulence, suggesting that overall length as well as specific sequence motifs distributed throughout the region contribute to virulence

    Morbillivirus Glycoprotein Expression Induces ER Stress, Alters Ca2+ Homeostasis and Results in the Release of Vasostatin

    Get PDF
    Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses

    European survey on laboratory preparedness, response and diagnostic capacity for crimean-congo haemorrhagic fever, 2012

    Get PDF
    Crimean-Congo haemorrhagic fever (CCHF) is an infectious viral disease that has (re-)emerged in the last decade in south-eastern Europe, and there is a risk for further geographical expansion to western Europe. Here we report the results of a survey covering 28 countries, conducted in 2012 among the member laboratories of the European Network for Diagnostics of 'Imported' Viral Diseases (ENIVD) to assess laboratory preparedness and response capacities for CCHF. The answers of 31 laboratories of the European region regarding CCHF case definition, training necessity, biosafety, quality assurance and diagnostic tests are presented. In addition, we identifi

    Specialist laboratory networks as preparedness and response tool - The emerging viral diseases-expert laboratory network and the chikungunya outbreak, Thailand, 2019

    Get PDF
    We illustrate the potential for specialist laboratory networks to be used as preparedness and response tool through rapid collection and sharing of data. Here, the Emerging Viral Diseases-Expert Laboratory Network (EVD-LabNet) and a laboratory assessment of chikungunya virus (CHIKV) in returning European travellers related to an ongoing outbreak in Thailand was used for this purpose. EVD-LabNet rapidly collected data on laboratory requests, diagnosed CHIKV imported cases and sequences generated, and shared among its members and with the European Centre for Disease Prevention and Control. Data across the network showed an increase in CHIKV imported cases during 1 October 2018-30 April 2019 vs the same period in 2018 (172 vs 50), particularly an increase in cases known to be related to travel to Thailand (72 vs 1). Moreover, EVD-LabNet showed that strains were imported from Thailand that cluster with strains of the ECSA-IOL E1 A226 variant emerging in Pakistan in 2016 and involved in the 2017 outbreaks in Italy. CHIKV diagnostic requests increased by 23.6% between the two periods. The impact of using EVD-LabNet or similar networks as preparedness and response tool could be improved by standardisation of the collection, quality and mining of data in routine laboratory management systems

    An mRNA region of the canine distemper virus fusion protein gene lacking AUG codons can promote protein expression.

    No full text
    Canine distemper virus (CDV) produces a glycosylated type I fusion protein (F) with an internal hydrophobic signal sequence beginning around 115 residues downstream of the first AUG used for translation initiation. Cleavage of the signal sequence yields the F0 molecule, which is cleaved into the F1 and F2 subunits. Surprisingly, when all in-frame AUGs located in the first third of the F gene were mutated a protein of the same molecular size as the F0 molecule was still expressed from both the Onderstepoort (OP) and A75/17-CDV F genes. We designated this protein, which is initiated from a non-AUG codon protein Fx. Site-directed mutagenesis allowed to identify codon 85, a GCC codon coding for alanine, as the most likely position from which translation initiation of Fx occurs in OP-CDV. Deletion analysis demonstrated that at least 60 nucleotides upstream of the GCC codon are required for efficient Fx translation. This sequence is GC-rich, suggesting extensive folding. Secondary structure may therefore be important for translation initiation at codon 85
    corecore