88 research outputs found

    Aharonov-Bohm ring with fluctuating flux

    Full text link
    We consider a non-interacting system of electrons on a clean one-channel Aharonov-Bohm ring which is threaded by a fluctuating magnetic flux. The flux derives from a Caldeira-Leggett bath of harmonic oscillators. We address the influence of the bath on the following properties: one- and two-particle Green's functions, dephasing, persistent current and visibility of the Aharonov-Bohm effect in cotunneling transport through the ring. For the bath spectra considered here (including Nyquist noise of an external coil), we find no dephasing in the linear transport regime at zero temperature. PACS numbers: 73.23.-b, 73.23.Hk, 73.23.Ra, 03.65.YzComment: 17 pages, 8 figures. To be published in PRB. New version contains minor corrections and additional discussion suggested by referee. A simple introduction to the basics of dephasing can be found at http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm

    Persistent current noise and electron-electron interactions

    Full text link
    We analyze fluctuations of persistent current (PC) produced by a charged quantum particle moving in a ring and interacting with a dissipative environment formed by diffusive electron gas. We demonstrate that in the presence of interactions such PC fluctuations persist down to zero temperature. In the case of weak interactions and/or sufficiently small values of the ring radius RR PC noise remains coherent and can be tuned by external magnetic flux Φx\Phi_x piercing the ring. In the opposite limit of strong interactions and/or large values of RR fluctuations in the electronic bath strongly suppress quantum coherence of the particle down to T=0T=0 and induce incoherent Φx\Phi_x-independent current noise in the ring which persists even at Φx=0\Phi_x=0 when the average PC is absent.Comment: 12 pages, 8 figure

    EuroSpine Task Force on Research: support for spine researchers

    Get PDF
    In recognition of the value of research to the practice of spine care, Federico Balagué and Ferran Pellisé, at the time President and Secretary for EuroSpine, asked Margareta Nordin to set up a Task Force on Research (TFR) for EuroSpine during summer 2011. The concept was to stimulate and facilitate a research community within the society, through two main functions: (1) distribution of EuroSpine funds to researchers; (2) develop and deliver research training/education courses. What has the EuroSpine TFR accomplished since its inception

    Zero-point fluctuations in the ground state of a mesoscopic normal ring

    Full text link
    We investigate the persistent current of a ring with an in-line quantum dot capacitively coupled to an external circuit. Of special interest is the magnitude of the persistent current as a function of the external impedance in the zero temperature limit when the only fluctuations in the external circuit are zero-point fluctuations. These are time-dependent fluctuations which polarize the ring-dot structure and we discuss in detail the contribution of displacement currents to the persistent current. We have earlier discussed an exact solution for the persistent current and its fluctuations based on a Bethe ansatz. In this work, we emphasize a physically more intuitive approach using a Langevin description of the external circuit. This approach is limited to weak coupling between the ring and the external circuit. We show that the zero temperature persistent current obtained in this approach is consistent with the persistent current calculated from a Bethe ansatz solution. In the absence of coupling our system is a two level system consisting of the ground state and the first excited state. In the presence of coupling we investigate the projection of the actual state on the ground state and the first exited state of the decoupled ring. With each of these projections we can associate a phase diffusion time. In the zero temperature limit we find that the phase diffusion time of the excited state projection saturates, whereas the phase diffusion time of the ground state projection diverges.Comment: 12 pages, 5 figure

    Dephasing in sequential tunneling through a double-dot interferometer

    Get PDF
    We analyze dephasing in a model system where electrons tunnel sequentially through a symmetric interference setup consisting of two single-level quantum dots. Depending on the phase difference between the two tunneling paths, this may result in perfect destructive interference. However, if the dots are coupled to a bath, it may act as a which-way detector, leading to partial suppression of the phase-coherence and the reappearance of a finite tunneling current. In our approach, the tunneling is treated in leading order whereas coupling to the bath is kept to all orders (using P(E) theory). We discuss the influence of different bath spectra on the visibility of the interference pattern, including the distinction between "mere renormalization effects" and "true dephasing".Comment: 18 pages, 8 figures; For a tutorial introduction to dephasing see http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm

    Zero-Point Fluctuations and the Quenching of the Persistent Current in Normal Metal Rings

    Full text link
    The ground state of a phase-coherent mesoscopic system is sensitive to its environment. We investigate the persistent current of a ring with a quantum dot which is capacitively coupled to an external circuit with a dissipative impedance. At zero temperature, zero-point quantum fluctuations lead to a strong suppression of the persistent current with decreasing external impedance. We emphasize the role of displacement currents in the dynamical fluctuations of the persistent current and show that with decreasing external impedance the fluctuations exceed the average persistent current.Comment: 4 pages, 2 eps figure

    Spin Fluctuation and Persistent Current in a Mesoscopic Ring Coupled to a Quantum Dot

    Full text link
    We investigate the persistent current influenced by the spin fluctuations in a mesoscopic ring weakly coupled to a quantum dot. It is shown that the Kondo effect gives rise to some unusual features of the persistent current in the limit where the charge transfer between two subsystems is suppressed. Various aspects of the crossover from a delocalized to a localized dot limit are discussed in relation with the effect of the coherent response of the Kondo cloud to the Aharonov-Bohm flux.Comment: 4 pages, 2 figure

    Health Expect

    Get PDF
    BACKGROUND: The patient has always been at the centre of the evidence-based medicine model. Case-based critical reviews, such as best-evidence topics, however, are incomplete reflections of the evidence-based medicine philosophy, because they fail to consider the patient's perspective. We propose a new framework, called the 'Shared Decision Evidence Summary' (ShaDES), where the patient's perspective on available treatment options is explicitly included. METHODS: Our framework is grounded in the critical appraisal of a clinical scenario, and the development of a clinical question, including patient characteristics, compared options and outcomes to be improved. Answers to the clinical question are informed by the literature, the evaluation of its quality and its potential usefulness to the clinical scenario. Finally, the evidence synthesis is presented to the patient to facilitate the formulation of an evidence-informed decision about the treatment options. KEY RESULTS: Using three similar but contrasted clinical scenarios of patients with low back pain, we illustrate how considering the patient's preferences on the proposed treatment options impact the bottom line, a synthetic formulation of the answer to the focused question. ShaDES includes clinical and psychosocial components, transformed in a searchable question, with a full search strategy. CONCLUSIONS: ShaDES is a practical framework that may facilitate clinical decisions adapted to psychological, social and other relevant non-clinical characteristics of patients

    Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot

    Full text link
    We study coherent charge transfer between an Aharonov-Bohm ring and a side-attached quantum dot. The charge fluctuation between the two sub-structures is shown to give rise to algebraic suppression of the persistent current circulating the ring as the size of the ring becomes relatively large. The charge fluctuation at resonance provides transition between the diamagnetic and the paramagnetic states. Universal scaling, crossover behavior of the persistent current from a continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure

    Mesoscopic circuits with charge discreteness:quantum transmission lines

    Full text link
    We propose a quantum Hamiltonian for a transmission line with charge discreteness. The periodic line is composed of an inductance and a capacitance per cell. In every cell the charge operator satisfies a nonlinear equation of motion because of the discreteness of the charge. In the basis of one-energy per site, the spectrum can be calculated explicitly. We consider briefly the incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.
    corecore