507 research outputs found

    Cerebral hemodynamics on MR perfusion images before and after bypass surgery in patients with giant intracranial aneurysms

    Get PDF
    Preoperative assessment of the anatomy and dynamics of cerebral circulation for patients with giant intracranial aneurysm can improve both outcome prediction and therapeutic approach. The aim of our study was to use perfusion MR imaging to evaluate cerebral hemodynamics in such patients before and after extraintracranial high-flow bypass surgery. METHODS: Five patients with a giant aneurysm of the intracranial internal carotid artery underwent MR studies before, 1 week after, and 1 month after high-flow bypass surgery. We performed MR and digital subtraction angiography, and conventional and functional MR sequences (diffusion and perfusion). Surgery consisted of middle cerebral artery (MCA)-internal carotid artery bypass with saphenous vein grafts (n = 4) or MCA-external carotid artery bypass (n = 1). RESULTS: In four patients, MR perfusion study showed impaired hemodynamics in the vascular territory supplied by the MCA of the aneurysm side, characterized by significantly reduced mean cerebral blood flow (CBF), whereas mean transit time (MTT) and regional cerebral blood volume (rCBV) were either preserved, reduced, or increased. After surgery, angiography showed good canalization of the bypass graft. MR perfusion data obtained after surgery showed improved cerebral hemodynamics in all cases, with a return of CBF index (CBFi), MTT, and rCBV to nearly normal values. CONCLUSION: Increased MTT with increased or preserved rCBV can be interpreted as a compensatory vasodilatory response to reduced perfusion pressure, presumably from compression and disturbed flow in the giant aneurysmal sac. When maximal vasodilation has occurred, however, the brain can no longer compensate for diminished perfusion by vasodilation, and rCBV and CBFi diminish. Bypass surgery improves hemodynamics, increasing perfusion pressure and, thus, CBFi. Perfusion MR imaging can be used to evaluate cerebral hemodynamics in patients with intracranial giant aneurysm.BACKGROUND AND PURPOSE: Preoperative assessment of the anatomy and dynamics of cerebral circulation for patients with giant intracranial aneurysm can improve both outcome prediction and therapeutic approach. The aim of our study was to use perfusion MR imaging to evaluate cerebral hemodynamics in such patients before and after extraintracranial high-flow bypass surgery. METHODS: Five patients with a giant aneurysm of the intracranial internal carotid artery underwent MR studies before, 1 week after, and 1 month after high-flow bypass surgery. We performed MR and digital subtraction angiography, and conventional and functional MR sequences (diffusion and perfusion). Surgery consisted of middle cerebral artery (MCA)-internal carotid artery bypass with saphenous vein grafts (n = 4) or MCA-external carotid artery bypass (n = 1). RESULTS: In four patients, MR perfusion study showed impaired hemodynamics in the vascular territory supplied by the MCA of the aneurysm side, characterized by significantly reduced mean cerebral blood flow (CBF), whereas mean transit time (MTT) and regional cerebral blood volume (rCBV) were either preserved, reduced, or increased. After surgery, angiography showed good canalization of the bypass graft. MR perfusion data obtained after surgery showed improved cerebral hemodynamics in all cases, with a return of CBF index (CBFi), MTT, and rCBV to nearly normal values. CONCLUSION: Increased MTT with increased or preserved rCBV can be interpreted as a compensatory vasodilatory response to reduced perfusion pressure, presumably from compression and disturbed flow in the giant aneurysmal sac. When maximal vasodilation has occurred, however, the brain can no longer compensate for diminished perfusion by vasodilation, and rCBV and CBFi diminish. Bypass surgery improves hemodynamics, increasing perfusion pressure and, thus, CBFi. Perfusion MR imaging can be used to evaluate cerebral hemodynamics in patients with intracranial giant aneurysm

    Flash-memories in Space Applications: Trends and Challenges

    Get PDF
    Nowadays space applications are provided with a processing power absolutely overcoming the one available just a few years ago. Typical mission-critical space system applications include also the issue of solid-state recorder(s). Flash-memories are nonvolatile, shock-resistant and power-economic, but in turn have different drawbacks. A solid-state recorder for space applications should satisfy many different constraints especially because of the issues related to radiations: proper countermeasures are needed, together with EDAC and testing techniques in order to improve the dependability of the whole system. Different and quite often contrasting dimensions need to be explored during the design of a flash-memory based solid- state recorder. In particular, we shall explore the most important flash-memory design dimensions and trade-offs to tackle during the design of flash-based hard disks for space applications

    Using Rejection Methods in a DSS for Production Strategies

    Full text link
    In this paper we face the problem arising in an enterprise that must decide whether and when scheduling production orders in order to maximize the production efficiency. In particular we developed an on-line scheduling algorithm able to manage such decisions. Computational results are provided to show the performance of the algorithm

    Delayed maintenance modelling considering speed restriction for a railway section

    Get PDF
    The deterioration of track geometry depends on several factors of which the speed of the train is one. Imposing a speed restriction can slow down the track deterioration and allows a longer survival time before a serious condition is achieved. Preventive maintenance delays can be authorized during the survival time. However, speed restrictions also reduce the system throughput. On the other hand, a longer interval between preventive maintenance activities has a lower maintenance action cost and it also enables grouping the maintenance activities to save set-up costs as well as system down time. If the repair delay is too long, it may cause unacceptable conditions on the track and lead to higher maintenance costs and accidents. Therefore, it is interesting to assess the effect of a speed restriction on the delayed maintenance strategies for a railway track section. We want to solve a maintenance optimization problem to find the optimal tuning of the maintenance delay time and imposition of a speed restriction. To this aim, a delayed maintenance model is developed, in which track deterioration depends on the train speed and the number of passing trains. The model is used to determine an optimal speed restriction strategy and a preventive repair delay for the optimization of the system benefit and unavailability. Coloured Petri Nets (CPN) are adopted to model the maintenance and operation of the railway track section. The CPN model describes the gradual track deterioration as a stochastic process. Different speed restriction policies and maintenance delay strategies are modelled and activated by the observed component states. Monte Carlo simulations are carried out to estimate the maintenance cost, the system benefit and the system downtime under different policies. Numerical results show the maintenance decision variable trade-off

    Ownership and control in a competitive industry

    Get PDF
    We study a differentiated product market in which an investor initially owns a controlling stake in one of two competing firms and may acquire a non-controlling or a controlling stake in a competitor, either directly using her own assets, or indirectly via the controlled firm. While industry profits are maximized within a symmetric two product monopoly, the investor attains this only in exceptional cases. Instead, she sometimes acquires a noncontrolling stake. Or she invests asymmetrically rather than pursuing a full takeover if she acquires a controlling one. Generally, she invests indirectly if she only wants to affect the product market outcome, and directly if acquiring shares is profitable per se. --differentiated products,separation of ownership and control,private benefits of control

    ELECTROENCEPHALOGRAPHY (EEG) AND ITS USE IN MOTOR LEARNING AND CONTROL

    Get PDF
    Electroencephalography (EEG) is a non-invasive technique of measuring electric currents generated from active brain regions and is a useful tool for researchers interested in motor control. The study of motor learning and control seeks to understand the way the brain understands, plans and executes movement both physical and imagined. Thus, the purpose of this study was to better understand the ways in which electroencephalography can be used to measure regions of the brain involved with motor control and learning. For this purpose, two independent studies were completed using EEG to monitor brain activity during both executed and imagined actions. The first study sought to understand the cognitive demand of altering a running gait and provides EEG evidence of motor learning. 13 young healthy runners participated in a 6-week in-field gait-retraining program that altered running gait by increasing step rate (steps per minute) by 5-10%. EEG was collected while participants ran on a treadmill with their original gait as a baseline measurement. After the baseline collection, participants ran for one minute at the same speed with a 5-10% step rate increase while EEG was collected. Participants then participated in a 6-week in-field gait-retraining program in which they received bandwith feedback while running in order to learn the new gait. After completing the 6-week training protocol, participants returned to the lab for post training EEG collection while running with the new step rate. Power spectral density plots were generated to measure frequency band power in all gait-retraining phases. Results in the right prefrontal cortex showed a significant increase in beta (13-30 Hz) while initially running with the new gait compared to the baseline step rate. Previous work suggests the right prefrontal cortex is involved with the inhibition of a previously learned behavior and thus, our results suggest an increase in cognitive load to inhibit the previous full stride motion. After training, this increase in beta over the right prefrontal cortex decreased, suggesting motor adaptations had occurred as a result of motor learning. These results give promising evidence for a new method of ensuring permanent changes in performance that will benefit rehabilitation and athletic performance training programs. The second study in this project sought to understand differences in right and left-handers as they mentally simulate movement. 24 right and left-handed individuals (12 right-handers, 12 left-handers) were shown pictures of individual hands on a screen while EEG was collected. Previous research has shown than while solving this task, participants mentally rotate a mental representation of their own hand to determine the handedness of the image. Event-related potential results showed that right-handers had an earlier and greater activation in the parietal regions than left-handers, whereas left-handers had a later and greater activation in the motor related brain regions compared to right-handers. These results suggest differing strategies while mentally solving motor related tasks between right and left-handers. We speculate this is a result of left-handers' need to adapt to a majorly right-hand dominant environment. Both these studies show the benefits of using EEG to understand the motor system in physically executed and imagined actions

    Mutant TDP-43 and FUS Cause Age-Dependent Paralysis and Neurodegeneration in C. elegans

    Get PDF
    Mutations in the DNA/RNA binding proteins TDP-43 and FUS are associated with Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degeneration. Intracellular accumulations of wild type TDP-43 and FUS are observed in a growing number of late-onset diseases suggesting that TDP-43 and FUS proteinopathies may contribute to multiple neurodegenerative diseases. To better understand the mechanisms of TDP-43 and FUS toxicity we have created transgenic Caenorhabditis elegans strains that express full-length, untagged human TDP-43 and FUS in the worm's GABAergic motor neurons. Transgenic worms expressing mutant TDP-43 and FUS display adult-onset, age-dependent loss of motility, progressive paralysis and neuronal degeneration that is distinct from wild type alleles. Additionally, mutant TDP-43 and FUS proteins are highly insoluble while wild type proteins remain soluble suggesting that protein misfolding may contribute to toxicity. Populations of mutant TDP-43 and FUS transgenics grown on solid media become paralyzed over 7 to 12 days. We have developed a liquid culture assay where the paralysis phenotype evolves over several hours. We introduce C. elegans transgenics for mutant TDP-43 and FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening
    corecore