276 research outputs found
Improved Aerogel Vacuum Thermal Insulation
An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness
Oceanographic signals at the Benthic Boundary Layer in the Mediterranean Sea
The Benthic Boundary Layer (BBL) is considered a quite homogeneous environment
where a wide variety of processes (chemical, physical, geological and biological) occur
often producing front structures or inducing turbulence phenomena. The typical
stratification of these zones can be interrupted by episodic events which effects can
diffuse to the ocean interior exploiting by local current and mixing processes.
According to hydrodynamic definition, the BBL thickness may vary from few millimetres
up to 100 metres depending on the friction intensity with the sea bed and the
stability of water column above it. Generally in deep-sea condition, the BBL thickness
is defined by the ratio between the friction velocity and the Coriolis parameter
according to the Ekman scale.
In the latest years several experiments have been carried out in the deep water of
Mediterranean Sea, focusing on the survey and study of benthic processes following
a multidisciplinary approach.
Benthic observatories, such as SN-1 and GEOSTAR, allow to record long time-series
of geochemical, seismological, geomagnetic, geodetic and oceanographic data and
allow to understand the dynamics and evolution of the processes though comparison
and interpolation of different types of signals.
From a oceanographic point of view, the technology of these benthic observatories
brings the possibility to observe and measure directly the hydrological properties at
the seafloor collecting data for long-time series and with high sampling rate.
The observatories deployed in Mediterranean Sea, have provided good information
about variations and oscillations of hydrological parameters in deep water where the monitoring is almost lacking.
In some cases it has been possible to link these deep-sea datasets with upper data
collected by ship-handled system during the same period or during different cruises.
This allows to have a more complete idea of the linkage between surface, intermediate
and bottom sea.
Hence the multidisciplinary approach represents a very important aspect for this kind
of study, because it allows not only a cross check of functionality among all the instruments
but also an important tool to recognise and better understand possible nonphysical-
oceanographic phenomena
Advanced Liquid-Cooling Garment Using Highly Thermally Conductive Sheets
This design of the liquid-cooling garment for NASA spacesuits allows the suit to remove metabolic heat from the human body more effectively, thereby increasing comfort and performance while reducing system mass. The garment is also more flexible, with fewer restrictions on body motion, and more effectively transfers thermal energy from the crewmember s body to the external cooling unit. This improves the garment s performance in terms of the maximum environment temperature in which it can keep a crewmember comfortable. The garment uses flexible, highly thermally conductive sheet material (such as graphite), coupled with cooling water lines of improved thermal conductivity to transfer the thermal energy from the body to the liquid cooling lines more effectively. The conductive sheets can be layered differently, depending upon the heat loads, in order to provide flexibility, exceptional in-plane heat transfer, and good through-plane heat transfer. A metal foil, most likely aluminum, can be put between the graphite sheets and the external heat source/sink in order to both maximize through-plane heat transfer at the contact points, and to serve as a protection to the highly conductive sheets. Use of a wicking layer draws excess sweat away from the crewmember s skin and the use of an outer elastic fabric ensures good thermal contact of the highly conductive underlayers with the skin. This allows the current state of the art to be improved by having cooling lines that can be more widely spaced to improve suit flexibility and to reduce weight. Also, cooling liquid does not have to be as cold to achieve the same level of cooling. Specific areas on the human body can easily be targeted for greater or lesser cooling to match human physiology, a warmer external environment can be tolerated, and spatial uniformity of the cooling garment can be improved to reduce vasoconstriction limits. Elements of this innovation can be applied to other embodiments to provide effective heat transfer over a flexible and surface-conformable fashion without the limitation of fluid freeze points
Wider-Opening Dewar Flasks for Cryogenic Storage
Dewar flasks have been proposed as containers for relatively long-term (25 days) storage of perishable scientific samples or other perishable objects at a temperature of 175 C. The refrigeration would be maintained through slow boiling of liquid nitrogen (LN2). For the purposes of the application for which these containers were proposed, (1) the neck openings of commercial off-the-shelf (COTS) Dewar flasks are too small for most NASA samples; (2) the round shapes of the COTS containers give rise to unacceptably low efficiency of packing in rectangular cargo compartments; and (3) the COTS containers include metal structures that are too thermally conductive, such that they cannot, without exceeding size and weight limits, hold enough LN2 for the required long-term-storage. In comparison with COTS Dewar flasks, the proposed containers would be rectangular, yet would satisfy the long-term storage requirement without exceeding size and weight limits; would have larger neck openings; and would have greater sample volumes, leading to a packing efficiency of about double the sample volume as a fraction of total volume. The proposed containers would be made partly of aerospace- type composite materials and would include vacuum walls, multilayer insulation, and aerogel insulation
Effects of a localized beam on the dynamics of excitable cavity solitons
We study the dynamical behavior of dissipative solitons in an optical cavity
filled with a Kerr medium when a localized beam is applied on top of the
homogeneous pumping. In particular, we report on the excitability regime that
cavity solitons exhibits which is emergent property since the system is not
locally excitable. The resulting scenario differs in an important way from the
case of a purely homogeneous pump and now two different excitable regimes, both
Class I, are shown. The whole scenario is presented and discussed, showing that
it is organized by three codimension-2 points. Moreover, the localized beam can
be used to control important features, such as the excitable threshold,
improving the possibilities for the experimental observation of this
phenomenon.Comment: 9 Pages, 12 figure
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
GEMS (Gamma Energy Marine Spectrometer) is a prototype of an autonomous radioactivity sensor for underwater measurements, developed in the framework for a development of a submarine telescope for neutrino detection (KM3NeT Design Study Project). The spectrometer is highly sensitive to gamma rays produced by 40K decays but it can detect other natural (e.g., 238U,232Th) and anthropogenic radio-nuclides (e.g., 137Cs). GEMS was firstly tested and calibrated in the laboratory using known sources and it was successfully deployed for a long-term (6 months) monitoring at a depth of 3200 m in the Ionian Sea (Capo Passero, offshore Eastern Sicily). The instrument recorded data for the whole deployment period within the expected specifications. This monitoring provided, for the first time, a continuous time-series of radioactivity in deep-sea.In press4.5. Studi sul degassamento naturale e sui gas petroliferiJCR Journalope
- …