22 research outputs found

    Solvent-Driven Supramolecular Wrapping of Self-Assembled Structures

    Get PDF
    Self‐assembly relies on the ability of smaller and discrete entities to spontaneously arrange into more organized systems by means of the structure‐encoded information. Herein, we show that the design of the media can play a role even more important than the chemical design. The media not only determines the self‐assembly pathway at a single‐component level, but in a very narrow solvent composition, a supramolecular homo‐aggregate can be non‐covalently wrapped by a second component that possesses a different crystal lattice. Such a process has been followed in real time by confocal microscopy thanks to the different emission colors of the aggregates formed by two isolated PtII complexes. This coating is reversible and controlled by the media composition. Single‐crystal X‐ray diffraction and molecular simulations based on coarse‐grained (CG) models allowed the understanding of the properties displayed by the different aggregates. Such findings could result in a new method to construct hierarchical supramolecular structures

    Cryo-electron microscopy of viruses

    Get PDF
    Thin vitrified layers of unfixed, unstained and unsupported virus suspensions can be prepared for observation by cryo-electron microscopy in easily controlled conditions. The viral particles appear free from the kind of damage caused by dehydration, freezing or adsorption to a support that is encountered in preparing biological samples for conventional electron microscopy. Cryo-electron microscopy of vitrified specimens offers possibilities for high resolution observations that compare favourably with any other electron microscopical method

    Luminescent dinuclear Cu(I) complexes containing rigid diphosphine ligands. Synthesis, photophysics and electroluminescent device

    No full text
    The synthesis and the photophysics of three dinuclear copper(I) complexes containing bis(bidentate)phosphine ligands are described. The steric constraint imposed by tetrakis(di(2-methoxyphenyl)phosphanyl)cyclobutane) (o-MeO-dppcb) in combination with 2,9-dimethyl-1,10-phenanthroline in one of the complexes leads to interesting photophysical properties. The compound shows an intense emission at room temperature in deoxygenated acetonitrile solution (Φ = 49%) and a long excited-state lifetime (13.8 μs). Interestingly, at low temperature, 77 K, the emission maximum shifts to lower energy, and the excited-state lifetime increases. This observation leads to the conclusion that a mixing between the excited triplet and singlet states is possible and that the degree of mixing and population of state strongly depends on temperature, as the energy difference is quite small. The electroluminescent properties of this compound were therefore tested in light-emitting electrochemical cells (LEECs), proving that the bright emission can also be obtained by electrically driven population of the singlet state

    Stabilisation effects of phosphane ligands in the homogeneous approach of sunlight induced hydrogen production

    No full text
    Most of the systems for photochemical hydrogen production are not stable and suffer from decomposition. With bis(bidentate) tetraphosphane ligands the stability increases enormously, up to more than 1000 h. This stability was achieved with a system containing osmium(ii) as a light harvesting antenna and palladium(ii) as a water reduction catalyst connected with a bis(bidentate) phosphane ligand in one molecule with the chemical formula [Os(bpy)2(dppcb)Pd(dppm)](PF6)4. With the help of electrochemical measurements as well as photophysical data and its single crystal X-ray structure, the electron transfer between the two active metal centres (light harvesting antenna, water reduction catalyst) was analysed. The distance between the two active metal centres was determined to be 7.396(1) Å. In a noble metal free combination of a copper based photosensitiser and a cobalt diimine-dioxime complex as water reduction catalyst a further stabilisation effect by the phosphane ligands is observed. With the help of triethylamine as a sacrificial donor in the presence of different monophosphane ligands it was possible to produce hydrogen with a turnover number of 1176. This completely novel combination is also able to produce hydrogen in a wide pH-range from pH = 7.0 to 12.5 with the maximum production at pH = 11.0. The influence of monophosphane ligands with different Tolman cone angles was investigated. Monophosphane ligands with a large Tolman cone angle (>160°) could not stabilise the intermediate of the cobalt based water reduction catalyst and so the turnover number is lower than for systems with an addition of monophosphane ligands with a Tolman cone angle smaller than 160°. The role of the monophosphane ligand during sunlight-induced hydrogen production was analysed and these results were confirmed with DFT calculations. Furthermore the crystal structures of two important Co(i) intermediates, which are the catalytic active species during the catalytic pathway, were obtained. The exchange of PPh3 with other tertiary phosphane ligands can have a major impact on the activity, depending on the coordination properties. By an exchange of monophosphane ligands with functionalised phosphane ligands (hybrid ligands) the hydrogen production was raised 2.17 times.</p

    Structural Relaxation of Low-Density Amorphous Ice upon Thermal Annealing

    No full text
    Despite the importance of low-density amorphous ice (LDA) in critical cosmological processes and its prominence as one of the polyamorphs of water there is still an incomplete picture of the processes that take place upon thermal annealing. Using Raman and Fourier transform infrared (FT-IR) spectroscopy, we show that a gradual structural relaxation process takes place upon heating vapor-deposited LDA, also called amorphous solid water, and LDAs obtained from several different states of high-density amorphous ice. The relaxation leads to an increase in structural order on local and more extended length scales as the average O–O distance shortens and the O–O distance distribution narrows. The relaxation process is separate from crystallization, and it does not seem to reach completion before crystallization sets in. Our findings are difficult to reconcile with the postulated glass transition of LDA to the supercooled and highly viscous liquid prior to crystallization
    corecore