135 research outputs found

    The Differential Expression of Cide Family Members is Associated with Nafld Progression from Steatosis to Steatohepatitis.

    Get PDF
    Improved understanding of the molecular mechanisms responsible for the progression from a "non-pathogenic" steatotic state to Non-Alcoholic Steatohepatitis is an important clinical requirement. The cell death-inducing DFF45 like effector (CIDE) family members (A, B and FSP27) regulate hepatic lipid homeostasis by controlling lipid droplet growth and/or VLDL production. However, CIDE proteins, particularly FSP27, have a dual role in that they also regulate cell death. We here report that the hepatic expression of CIDEA and FSP27 (α/β) was similarly upregulated in a dietary mouse model of obesity-mediated hepatic steatosis. In contrast, CIDEA expression decreased, but FSP27-β expression strongly increased in a dietary mouse model of steatohepatitis. The inverse expression pattern of CIDEA and FSP27β was amplified with the increasing severity of the liver inflammation and injury. In obese patients, the hepatic CIDEC2 (human homologue of mouse FSP27β) expression strongly correlated with the NAFLD activity score and liver injury. The hepatic expression of CIDEA tended to increase with obesity, but decreased with NAFLD severity. In hepatic cell lines, the downregulation of FSP27β resulted in the fractionation of lipid droplets, whereas its overexpression decreased the expression of the anti-apoptotic BCL2 marker. This, in turn, sensitized cells to apoptosis in response to TNF α and saturated fatty acid. Considered together, our animal, human and in vitro studies indicate that differential expression of FSP27β/CIDEC2 and CIDEA is related to NAFLD progression and liver injury

    Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation

    Get PDF
    Obesity increases the risk of developing life-threatening metabolic diseases including cardiovascular disease, fatty liver disease, diabetes, and cancer. Efforts to curb the global obesity epidemic and its impact have proven unsuccessful in part by a limited understanding of these chronic progressive diseases. It is clear that low-grade chronic inflammation, or metaflammation, underlies the pathogenesis of obesity-associated type 2 diabetes and atherosclerosis. However, the mechanisms that maintain chronicity and prevent inflammatory resolution are poorly understood. Here, we show that inhibitor of κB kinase epsilon (IKBKE) is a novel regulator that limits chronic inflammation during metabolic disease and atherosclerosis. The pathogenic relevance of IKBKE was indicated by the colocalization with macrophages in human and murine tissues and in atherosclerotic plaques. Genetic ablation of IKBKE resulted in enhanced and prolonged priming of the NLRP3 inflammasome in cultured macrophages, in hypertrophic adipose tissue, and in livers of hypercholesterolemic mice. This altered profile associated with enhanced acute phase response, deregulated cholesterol metabolism, and steatoheptatitis. Restoring IKBKE only in hematopoietic cells was sufficient to reverse elevated inflammasome priming and these metabolic features. In advanced atherosclerotic plaques, loss of IKBKE and hematopoietic cell restoration altered plaque composition. These studies reveal a new role for hematopoietic IKBKE: to limit inflammasome priming and metaflammation

    Radiosensitising effect of electrochemotherapy with bleomycin in LPB sarcoma cells and tumors in mice

    Get PDF
    BACKGROUND: Bleomycin is poorly permeant but potent cytotoxic and radiosensitizing drug. The aim of the study was to evaluate whether a physical drug delivery system – electroporation can increase radiosensitising effect of bleomycin in vitro and in vivo. METHODS: LPB sarcoma cells and tumors were treated either with bleomycin, electroporation or ionizing radiation, and combination of these treatments. In vitro, response to different treatments was determined by colony forming assay, while in vivo, treatment effectiveness was determined by local tumor control (TCD(50)). Time dependence of partial oxygen pressure in LPB tumors after application of electric pulses was measured by electron paramagnetic oxyimetry. RESULTS: Electroporation of cells in vitro increased radiosensitising effect of bleomycin for 1.5 times, in vivo radiation response of tumors was enhanced by 1.9 fold compared to response of tumors that were irradiated only. Neither treatment of tumors with bleomycin nor application of electric pulses only, affected radiation response of tumors. Application of electric pulses to the tumors induced profound but transient reduction of tumor oxygenation. Although tumor oxygenation after electroporation partially restored at the time of irradiation, it was still reduced at the level of radiobiologically relevant hypoxia. CONCLUSION: Our study shows that application of electric pulses to cells and tumors increases radiosensitising effect of bleomycin. Furthermore, our results demonstrate that the radiobiologically relevant hypoxia induced by electroporation of tumors did not counteract the pronounced radiosensitising effect of electrochemotherapy with bleomycin

    Inflammation, ECG changes and pericardial effusion: Whom to biopsy in suspected myocarditis?

    Get PDF
    The role of endomyocardial biopsies in patients with clinically suspected acute myocarditis, myocarditis in the past, and dilated cardiomyopathy is discussed controversially. In fact, it is still under discussion whether information obtained from endomyocardial biopsies is relevant for further clinical decisions. Therefore this Critical Perspective will deal with the question, which patient should undergo endomyocardial biopsy investigations for an etiopathogenic differentiation of the disease and for the possible choice of immunomodulatory treatment strategies

    Screening for therapeutic trials and treatment indication in clinical practice: MACK-3, a new blood test for the diagnosis of fibrotic NASH

    Get PDF
    BACKGROUND: The composite histological endpoint comprising nonalcoholic steatohepatitis (NASH) and NAFLD activity score ≥4 and advanced fibrosis (F ≥ 2) ("fibrotic NASH") is becoming an important diagnostic target in NAFLD: it is currently used to select patients for inclusion in phase III therapeutic trials and will ultimately be used to indicate treatment in clinical practice once the new drugs are approved. AIM: To develop a new blood test specifically dedicated for this new diagnostic target of interest. METHODS: Eight Hundred and forty-six biopsy-proven NAFLD patients from three centres (Angers, Nice, Antwerp) were randomised into derivation and validation sets. RESULTS: The blood fibrosis tests BARD, NFS and FIB4 had poor accuracy for fibrotic NASH with respective AUROC: 0.566 ± 0.023, 0.654 ± 0.023, 0.732 ± 0.021. In the derivation set, fibrotic NASH was independently predicted by AST, HOMA and CK18; all three were combined in the new blood test MACK-3 (hoMa, Ast, CK18) for which 90% sensitivity and 95% specificity cut-offs were calculated. In the validation set, MACK-3 had a significantly higher AUROC (0.847 ± 0.030, P ≤ 0.002) than blood fibrosis tests. Using liver biopsy in the grey zone between the two cut-offs (36.0% of the patients), MACK-3 provided excellent accuracy for the diagnosis of fibrotic NASH with 93.3% well-classified patients, sensitivity: 90.0%, specificity: 94.2%, positive predictive value: 81.8% and negative predictive value: 97.0%. CONCLUSION: The new blood test MACK-3 accurately diagnoses fibrotic NASH. This new test will facilitate patient screening and inclusion in NAFLD therapeutic trials and will enable the identification of patients who will benefit from the treatments once approved

    Rab4b Is a Small GTPase Involved in the Control of the Glucose Transporter GLUT4 Localization in Adipocyte

    Get PDF
    Endosomal small GTPases of the Rab family, among them Rab4a, play an essential role in the control of the glucose transporter GLUT4 trafficking, which is essential for insulin-mediated glucose uptake. We found that adipocytes also expressed Rab4b and we observed a consistent decrease in the expression of Rab4b mRNA in human and mice adipose tissue in obese diabetic states. These results led us to study this poorly characterized Rab member and its potential role in glucose transport.We used 3T3-L1 adipocytes to study by imaging approaches the localization of Rab4b and to determine the consequence of its down regulation on glucose uptake and endogenous GLUT4 location. We found that Rab4b was localized in endosomal structures in preadipocytes whereas in adipocytes it was localized in GLUT4 and in VAMP2-positive compartments, and also in endosomal compartments containing the transferrin receptor (TfR). When Rab4b expression was decreased with specific siRNAs by two fold, an extent similar to its decrease in obese diabetic subjects, we observed a small increase (25%) in basal deoxyglucose uptake and a more sustained increase (40%) in presence of submaximal and maximal insulin concentrations. This increase occurred without any change in GLUT4 and GLUT1 expression levels and in the insulin signaling pathways. Concomitantly, GLUT4 but not TfR amounts were increased at the plasma membrane of basal and insulin-stimulated adipocytes. GLUT4 seemed to be targeted towards its non-endosomal sequestration compartment.Taken our results together, we conclude that Rab4b is a new important player in the control of GLUT4 trafficking in adipocytes and speculate that difference in its expression in obese diabetic states could act as a compensatory effect to minimize the glucose transport defect in their adipocytes

    Electroporation-Induced Electrosensitization

    Get PDF
    BACKGROUND: Electroporation is a method of disrupting the integrity of cell membrane by electric pulses (EPs). Electrical modeling is widely employed to explain and study electroporation, but even most advanced models show limited predictive power. No studies have accounted for the biological consequences of electroporation as a factor that alters the cell's susceptibility to forthcoming EPs. METHODOLOGY/PRINCIPAL FINDINGS: We focused first on the role of EP rate for membrane permeabilization and lethal effects in mammalian cells. The rate was varied from 0.001 to 2,000 Hz while keeping other parameters constant (2 to 3,750 pulses of 60-ns to 9-µs duration, 1.8 to 13.3 kV/cm). The efficiency of all EP treatments was minimal at high rates and started to increase gradually when the rate decreased below a certain value. Although this value ranged widely (0.1-500 Hz), it always corresponded to the overall treatment duration near 10 s. We further found that longer exposures were more efficient irrespective of the EP rate, and that splitting a high-rate EP train in two fractions with 1-5 min delay enhanced the effects severalfold. CONCLUSIONS/SIGNIFICANCE: For varied experimental conditions, EPs triggered a delayed and gradual sensitization to EPs. When a portion of a multi-pulse exposure was delivered to already sensitized cells, the overall effect markedly increased. Because of the sensitization, the lethality in EP-treated cells could be increased from 0 to 90% simply by increasing the exposure duration, or the exposure dose could be reduced twofold without reducing the effect. Many applications of electroporation can benefit from accounting for sensitization, by organizing the exposure either to maximize sensitization (e.g., for sterilization) or, for other applications, to completely or partially avoid it. In particular, harmful side effects of electroporation-based therapies (electrochemotherapy, gene therapies, tumor ablation) include convulsions, pain, heart fibrillation, and thermal damage. Sensitization can potentially be employed to reduce these side effects while preserving or increasing therapeutic efficiency

    Politics of nanotechnologies in food and agriculture

    Get PDF
    The chapter discusses the reasons for the delay in the regulatory intervention concerning nanotechnologies used in the agriculture and food sectors. The main finding is that unregulated introduction of nanoinnovation into the food system is due to the current neoliberal food policy and to the power struggles that characterize the economic, social and political dynamics within the global supply chain. Therefore, it is necessary to put the ‘question concerning technology’ at the center of the regulatory debate in order to implement a regulatory system able to face nanorisks. Which means looking at the way in which technology controls power relationships within society. Attention should be shifted from efficiency to power issues, and new technologies should be assessed from a political rather than an economic or ethical perspective
    corecore