313 research outputs found
Development of Ferroelectric Order in Relaxor (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3
The microstructure and phase transition in relaxor ferroelectric
Pb(Mg1/3Nb2/3)O3 (PMN) and its solid solution with PbTiO3 (PT), PMN-xPT, remain
to be one of the most puzzling issues of solid state science. In the present
work we have investigated the evolution of the phase symmetry in PMN-xPT
ceramics as a function of temperature (20 K < T < 500 K) and composition (0 <=
x <= 0.15) by means of high-resolution synchrotron x-ray diffraction.
Structural analysis based on the experimental data reveals that the
substitution of Ti^4+ for the complex B-site (Mg1/3Nb2/3)^4+ ions results in
the development of a clean rhombohedral phase at a PT-concentration as low as
5%. The results provide some new insight into the development of the
ferroelectric order in PMN-PT, which has been discussed in light of the
kinetics of polar nanoregions and the physical models of the relaxor
ferroelectrics to illustrate the structural evolution from a relaxor to a
ferroelectric state.Comment: Revised version with updated references; 9 pages, 4 figures embedde
Aging effects manifested in the potential energy landscape of a model glass former
We present molecular dynamics simulations of a model glass-forming liquid
(the binary Kob-Anderson Lennard-Jones model) and consider the distributions of
inherent energies and metabasins during aging. In addition to the typical
protocol of performing a temperature jump from a high temperature to a low
destination temperature, we consider the temporal evolution of the
distributions after an 'up-jump', i.e. from a low to a high temperature. In
this case the distribution of megabasin energies exhibits a transient two-peak
structure. Our results can qualitatively be rationalized in terms of a trap
model with a Gaussian distribution of trap energies. The analysis is performed
for different system sizes. A detailed comparison with the trap model is
possible only for a small system because of major averging effects for larger
systems.Comment: 16 pages, 14 figure
Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(InNb)O}
We examine a simple model for Pb(InNb)O (PIN), which
includes both long-range dipole-dipole interaction and random local anisotropy.
A improved algorithm optimized for long-range interaction has been applied for
efficient large-scale Monte Carlo simulation. We demonstrate that the phase
diagram of PIN is qualitatively reproduced by this minimum model. Some
properties characteristic of relaxors such as nano-scale domain formation, slow
dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure
Electroreflectance characterization of AlInGaN/GaN high-electron mobility heterostructures
Room temperature electroreflectance (ER) spectroscopy has been used to study the fundamental properties of AlxInyGaN/AlN/GaN heterostructures under different applied bias. The (0001)-oriented heterostructures were grown by metal-organic vapor phase epitaxy on sapphire. The band gap energy of the AlxInyGa layers has been determined from analysis of the ER spectra using Aspnes' model. The obtained values are in good agreement with a nonlinear band gap interpolation equation proposed earlier. Bias-dependent ER allows one to determine the sheet carrier density of the two-dimensional electron gas and the barrier field strength
Effect of high pressure on multiferroic BiFeO3
We report experimental evidence for pressure instabilities in the model
multiferroic BiFeO3 and namely reveal two structural phase transitions around 3
GPa and 10 GPa by using diffraction and far-infrared spectroscopy at a
synchrotron source. The intermediate phase from 3 to 9 GPa crystallizes in a
monoclinic space group, with octahedra tilts and small cation displacements.
When the pressure is further increased the cation displacements (and thus the
polar character) of BiFeO3 is suppressed above 10 GPa. The above 10 GPa
observed non-polar orthorhombic Pnma structure is in agreement with recent
theoretical ab-initio prediction, while the intermediate monoclinic phase was
not predicted theoretically.Comment: new version, accepted for publication in Phys. Rev.
A muon-spin relaxation study of BiMnO3
We present the results of muon-spin relaxation measurements on ferromagnetic
BiMnO3. Below T_C=98.0(1) K oscillations in the time-dependence of the muon
polarization are observed, characteristic of a quasistatic magnetic field at a
single muon site, allowing us to probe the critical behaviour associated with
the magnetic phase transition. We are able to suggest candidate muon sites on
the basis of dipole field calculations. Close to T_C, fluctuations of the Mn^3+
moments are characteristic of critical behaviour while there is a sharp
crossover to a region of fast dynamic fluctuations at higher temperatures.Comment: 10 pages, 4 figure
Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3
Recent neutron scattering measurements performed on the relaxor ferroelectric
Pb[(Zn1/3Nb2/3)0.92Ti0.08]O3 (PZN-8%PT) in its cubic phase at 500 K, have
revealed an anomalous ridge of inelastic scattering centered ~0.2 A-1 from the
zone center (Gehring et al., Phys. Rev. Lett. 84, 5216 (2000)). This ridge of
scattering resembles a waterfall when plotted as a phonon dispersion diagram,
and extends vertically from the transverse acoustic (TA) branch near 4 meV to
the transverse optic (TO) branch near 9 meV. No zone center optic mode was
found. We report new results from an extensive neutron scattering study of pure
PZN that exhibits the same waterfall feature. We are able to model the dynamics
of the waterfall using a simple coupled-mode model that assumes a strongly
q-dependent optic mode linewidth Gamma1(q) that increases sharply near 0.2 A-1
as one approaches the zone center. This model was motivated by the results of
Burns and Dacol in 1983, who observed the formation of a randomly-oriented
local polarization in PZN at temperatures far above its ferroelectric phase
transition temperature. The dramatic increase in Gamma1 is believed to occur
when the wavelength of the optic mode becomes comparable to the size of the
small polarized micro-regions (PMR) associated with this randomly-oriented
local polarization, with the consequence that longer wavelength optic modes
cannot propagate and become overdamped. Below Tc=410 K, the intensity of the
waterfall diminishes. At lowest temperatures ~30 K the waterfall is absent, and
we observe the recovery of a zone center transverse optic mode near 10.5 meV.Comment: 8 pages, 9 figures (one color). Submitted to Physical Review
Phonon and magnon scattering of antiferromagnetic Bi2Fe4O9
The phonon structure of antiferromagnetic Bi2Fe4O9 (space group Pbnm No. 55, TN≈240 K) was studied theoretically by calculations of lattice dynamics and experimentally between 10 and 300 K by polarized Raman spectroscopy. Most of the 12Ag+12B1g+9B2g+9B3g Raman modes were unambiguously identified. Strong second-order scattering was observed for ab-plane-confined incident and scattered light polarizations. In addition to the phonon-scattering, broad Raman bands with typical characteristics of magnon scattering appear below TN. The magnon bands are analyzed on the basis of magnetic structure of Bi2Fe4O9 and attributed to two- magnon excitations
Noether's Symmetry Theorem for Variational and Optimal Control Problems with Time Delay
We extend the DuBois-Reymond necessary optimality condition and Noether's
symmetry theorem to the time delay variational setting. Both Lagrangian and
Hamiltonian versions of Noether's theorem are proved, covering problems of the
calculus of variations and optimal control with delays.Comment: This is a preprint of a paper whose final and definite form will
appear in the international journal Numerical Algebra, Control and
Optimization (NACO). Paper accepted for publication 15-March-201
- …