70 research outputs found

    Antiphospholipid Antibody Syndrome In The Thrombophilia Pilot Project

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106074/1/jth01382.pd

    Increased Adhesive Potential of Antiphospholipid Syndrome Neutrophils Mediated by β2 Integrin Macâ 1

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153125/1/art41057.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153125/2/art41057_am.pd

    Severe course of Lyme neuroborreliosis in an HIV-1 positive patient; case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lyme Neuroborreliosis (LNB) in a human immunodeficiency virus (HIV) positive patient is a rare co-infection and has only been reported four times in literature. No case of an HIV patient with a meningoencephalitis due to LNB in combination with HIV has been described to date.</p> <p>Case presentation</p> <p>A 51 year old woman previously diagnosed with HIV presented with an atypical and severe LNB. Diagnosis was made evident by several microbiological techniques. Biochemical and microbiological recovery during treatment was rapid, however after treatment the patient suffered from severe and persistent sequelae.</p> <p>Conclusions</p> <p>A clinician should consider LNB when being confronted with an HIV patient with focal encephalitis, without any history of Lyme disease or tick bites, in an endemic area. Rapid diagnosis and treatment is necessary in order to minimize severe sequelae.</p

    Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    Get PDF
    Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems

    In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

    Get PDF
    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.São Paulo Research Foundation grants: (2011/24038-1 [MRDL], 2009/08559-1 [HBdS], CAPES/IGC 04/ 2012 [MRDL, CET])

    Functional Analysis of the Borrelia burgdorferi bba64 Gene Product in Murine Infection via Tick Infestation

    Get PDF
    Borrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B. burgdorferi must adapt to many environmental changes by regulating several genes, including bba64. Our laboratory recently demonstrated that the bba64 gene product is necessary for mouse infectivity when B. burgdorferi is transmitted by an infected tick bite, but not via needle inoculation. In this study we investigated the phenotypic properties of a bba64 mutant strain, including 1) replication during tick engorgement, 2) migration into the nymphal salivary glands, 3) host transmission, and 4) susceptibility to the MyD88-dependent innate immune response. Results revealed that the bba64 mutant's attenuated infectivity by tick bite was not due to a growth defect inside an actively feeding nymphal tick, or failure to invade the salivary glands. These findings suggested there was either a lack of spirochete transmission to the host dermis or increased susceptibility to the host's innate immune response. Further experiments showed the bba64 mutant was not culturable from mouse skin taken at the nymphal bite site and was unable to establish infection in MyD88-deficient mice via tick infestation. Collectively, the results of this study indicate that BBA64 functions at the salivary gland-to-host delivery interface of vector transmission and is not involved in resistance to MyD88-mediated innate immunity

    The Tumor Microenvironment: The Making of a Paradigm

    Get PDF
    What has been will be again, what has been done will be done again; there is nothing new under the su
    corecore