1,795 research outputs found

    Molecular line study of the very young protostar IRAM 04191 in Taurus: Infall, rotation, and outflow

    Get PDF
    We present a detailed millimeter line study of the circumstellar environment of the low-luminosity Class 0 protostar IRAM 04191+1522 in the Taurus molecular cloud. New line observations demonstrate that the ~14000 AU radius protostellar envelope is undergoing both extended infall and fast, differential rotation. Radiative transfer modeling of multitransition CS and C34S maps indicate an infall velocity v_inf ~ 0.15 km/s at r ~ 1500 AU and v_inf ~ 0.1 km/s up to r ~ 11000 AU, as well as a rotational angular velocity Omega ~ 3.9 x 10^{-13} rad/s, strongly decreasing with radius beyond 3500 AU down to a value Omega ~ 1.5-3 x 10^{-14} rad/s at ~ 11000 AU. Two distinct regions, which differ in both their infall and their rotation properties, therefore seem to stand out: the inner part of the envelope (r ~< 2000-4000 AU) is rapidly collapsing and rotating, while the outer part undergoes only moderate infall/contraction and slower rotation. These contrasted features suggest that angular momentum is conserved in the collapsing inner region but efficiently dissipated due to magnetic braking in the slowly contracting outer region. We propose that the inner envelope is in the process of decoupling from the ambient cloud and corresponds to the effective mass reservoir (~0.5 M_sun) from which the central star is being built. Comparison with the rotational properties of other objects in Taurus suggests that IRAM 04191 is at a pivotal stage between a prestellar regime of constant angular velocity enforced by magnetic braking and a dynamical, protostellar regime of nearly conserved angular momentum. The rotation velocity profile we derive for the inner IRAM 04191 envelope should thus set some constraints on the distribution of angular momentum on the scale of the outer Solar system at the onset of protostar/disk formation.Comment: 23 pages, 16 figures, 1 table, Accepted by Astronomy & Astrophysic

    Singularity-Free Electrodynamics for Point Charges and Dipoles: Classical Model for Electron Self-Energy and Spin

    Get PDF
    It is shown how point charges and point dipoles with finite self-energies can be accomodated into classical electrodynamics. The key idea is the introduction of constitutive relations for the electromagnetic vacuum, which actually mirrors the physical reality of vacuum polarization. Our results reduce to conventional electrodynamics for scales large compared to the classical electron radius r02.8×1013r_0\approx 2.8\times10^{-13} cm. A classical simulation for a structureless electron is proposed, with the appropriate values of mass, spin and magnetic moment.Comment: 3 page

    Quantifying loopy network architectures

    Get PDF
    Biology presents many examples of planar distribution and structural networks having dense sets of closed loops. An archetype of this form of network organization is the vasculature of dicotyledonous leaves, which showcases a hierarchically-nested architecture containing closed loops at many different levels. Although a number of methods have been proposed to measure aspects of the structure of such networks, a robust metric to quantify their hierarchical organization is still lacking. We present an algorithmic framework, the hierarchical loop decomposition, that allows mapping loopy networks to binary trees, preserving in the connectivity of the trees the architecture of the original graph. We apply this framework to investigate computer generated graphs, such as artificial models and optimal distribution networks, as well as natural graphs extracted from digitized images of dicotyledonous leaves and vasculature of rat cerebral neocortex. We calculate various metrics based on the Asymmetry, the cumulative size distribution and the Strahler bifurcation ratios of the corresponding trees and discuss the relationship of these quantities to the architectural organization of the original graphs. This algorithmic framework decouples the geometric information (exact location of edges and nodes) from the metric topology (connectivity and edge weight) and it ultimately allows us to perform a quantitative statistical comparison between predictions of theoretical models and naturally occurring loopy graphs.Comment: 17 pages, 8 figures. During preparation of this manuscript the authors became aware of the work of Mileyko at al., concurrently submitted for publicatio

    Boundary dynamics and multiple reflection expansion for Robin boundary conditions

    Get PDF
    In the presence of a boundary interaction, Neumann boundary conditions should be modified to contain a function S of the boundary fields: (\nabla_N +S)\phi =0. Information on quantum boundary dynamics is then encoded in the SS-dependent part of the effective action. In the present paper we extend the multiple reflection expansion method to the Robin boundary conditions mentioned above, and calculate the heat kernel and the effective action (i) for constant S, (ii) to the order S^2 with an arbitrary number of tangential derivatives. Some applications to symmetry breaking effects, tachyon condensation and brane world are briefly discussed.Comment: latex, 22 pages, no figure

    Elite or middling? International students and migrant diversification

    Get PDF
    Student migrants from former sending regions now form a substantial share of non-European Union migration flows to Europe. These flows represent the convergence of extensive internationalisation of higher education with increasing restrictions on family and labour migration. This article provides the first examination of student migrants? early socio-cultural and structural integration by following recently arrived Pakistani students in London over an 18-month period. We use latent class analysis to identify both elite and two ?middling? types ? middle class and network-driven ? within our student sample. We then ask whether these types experience early socio-cultural and structural integration trajectories that differ in the ways that the elite and middling transnational literatures would suggest. We find differences in structural, but less in socio-cultural outcomes. We conclude that to understand the implications of expanding third country student migration across the European Union, it is important to recognize both the distinctiveness of this flow and its heterogeneity

    Why are Prices Sticky? Evidence from Business Survey Data

    Get PDF
    This paper offers new insights on the price setting behaviour of German retail firms using a novel dataset that consists of a large panel of monthly business surveys from 1991-2006. The firm-level data allows matching changes in firms' prices to several other firm-characteristics. Moreover, information on price expectations allow analyzing the determinants of price updating. Using univariate and bivariate ordered probit specifications, empirical menu cost models are estimated relating the probability of price adjustment and price updating, respectively, to both time- and state- dependent variables. First, results suggest an important role for state-dependence; changes in the macroeconomic and institutional environment as well as firm-specific factors are significantly related to the timing of price adjustment. These findings imply that price setting models should endogenize the timing of price adjustment in order to generate realistic predictions concerning the transmission of monetary policy. Second, an analysis of price expectations yields similar results providing evidence in favour of state-dependent sticky plan models. Third, intermediate input cost changes are among the most important determinants of price adjustment suggesting that pricing models should explicitly incorporate price setting at different production stages. However, the results show that adjustment to input cost changes takes time indicating "additional stickiness" at the last stage of processing

    WARNING: Physics Envy May Be Hazardous To Your Wealth!

    Get PDF
    The quantitative aspirations of economists and financial analysts have for many years been based on the belief that it should be possible to build models of economic systems - and financial markets in particular - that are as predictive as those in physics. While this perspective has led to a number of important breakthroughs in economics, "physics envy" has also created a false sense of mathematical precision in some cases. We speculate on the origins of physics envy, and then describe an alternate perspective of economic behavior based on a new taxonomy of uncertainty. We illustrate the relevance of this taxonomy with two concrete examples: the classical harmonic oscillator with some new twists that make physics look more like economics, and a quantitative equity market-neutral strategy. We conclude by offering a new interpretation of tail events, proposing an "uncertainty checklist" with which our taxonomy can be implemented, and considering the role that quants played in the current financial crisis.Comment: v3 adds 2 reference

    Green functions for generalized point interactions in 1D: A scattering approach

    Get PDF
    Recently, general point interactions in one dimension has been used to model a large number of different phenomena in quantum mechanics. Such potentials, however, requires some sort of regularization to lead to meaningful results. The usual ways to do so rely on technicalities which may hide important physical aspects of the problem. In this work we present a new method to calculate the exact Green functions for general point interactions in 1D. Our approach differs from previous ones because it is based only on physical quantities, namely, the scattering coefficients, RR and TT, to construct GG. Renormalization or particular mathematical prescriptions are not invoked. The simple formulation of the method makes it easy to extend to more general contexts, such as for lattices of NN general point interactions; on a line; on a half-line; under periodic boundary conditions; and confined in a box.Comment: Revtex, 9 pages, 3 EPS figures. To be published in PR

    Evidence and Ideology in Macroeconomics: The Case of Investment Cycles

    Get PDF
    The paper reports the principal findings of a long term research project on the description and explanation of business cycles. The research strongly confirmed the older view that business cycles have large systematic components that take the form of investment cycles. These quasi-periodic movements can be represented as low order, stochastic, dynamic processes with complex eigenvalues. Specifically, there is a fixed investment cycle of about 8 years and an inventory cycle of about 4 years. Maximum entropy spectral analysis was employed for the description of the cycles and continuous time econometrics for the explanatory models. The central explanatory mechanism is the second order accelerator, which incorporates adjustment costs both in relation to the capital stock and the rate of investment. By means of parametric resonance it was possible to show, both theoretically and empirically how cycles aggregate from the micro to the macro level. The same mathematical tool was also used to explain the international convergence of cycles. I argue that the theory of investment cycles was abandoned for ideological, not for evidential reasons. Methodological issues are also discussed
    corecore