1,279 research outputs found

    A Call to Arms: Revisiting Database Design

    Get PDF
    Good database design is crucial to obtain a sound, consistent database, and - in turn - good database design methodologies are the best way to achieve the right design. These methodologies are taught to most Computer Science undergraduates, as part of any Introduction to Database class. They can be considered part of the "canon", and indeed, the overall approach to database design has been unchanged for years. Moreover, none of the major database research assessments identify database design as a strategic research direction. Should we conclude that database design is a solved problem? Our thesis is that database design remains a critical unsolved problem. Hence, it should be the subject of more research. Our starting point is the observation that traditional database design is not used in practice - and if it were used it would result in designs that are not well adapted to current environments. In short, database design has failed to keep up with the times. In this paper, we put forth arguments to support our viewpoint, analyze the root causes of this situation and suggest some avenues of research.Comment: Removed spurious column break. Nothing else was change

    Development of an Optimization-Based Atomistic-to-Continuum Coupling Method

    Full text link
    Atomistic-to-Continuum (AtC) coupling methods are a novel means of computing the properties of a discrete crystal structure, such as those containing defects, that combine the accuracy of an atomistic (fully discrete) model with the efficiency of a continuum model. In this note we extend the optimization-based AtC, formulated in arXiv:1304.4976 for linear, one-dimensional problems to multi-dimensional settings and arbitrary interatomic potentials. We conjecture optimal error estimates for the multidimensional AtC, outline an implementation procedure, and provide numerical results to corroborate the conjecture for a 1D Lennard-Jones system with next-nearest neighbor interactions.Comment: 12 pages, 3 figure

    An exploratory study on techniques for quantitative assessment of stroke rehabilitation exercises

    Get PDF
    Technology-assisted systems to monitor and assess rehabilitation exercises have an opportunity of enhancing rehabilitation practices by automatically collecting patient’s quantitative performance data. However, even if a complex algorithm (e.g. Neural Network) is applied, it is still challenging to develop such a system due to pa tients with various physical conditions. The system with a complex algorithm is limited to be a black-box system that cannot provide explanations on its predictions. To address these challenges, this paper presents a hybrid model that integrates a machine learn ing (ML) model with a rule-based (RB) model as an explainable artificial intelligence (AI) technique for quantitative assessment of stroke rehabilitation exercises. For evaluation, we collected thera pist’s knowledge on assessment as 15 rules from interviews with therapists and the dataset of three upper-limb stroke rehabilitation exercises from 15 post-stroke and 11 healthy subjects using a Kinect sensor. Experimental results show that a hybrid model can achieve comparable performance with a ML model using Neural Network, but also provide explanations on a model prediction with a RB model. The results indicate the potential of a hybrid model as an explainable AI technique to support the interpretation of a model and fine-tune a model with user-specific rules for personalization.info:eu-repo/semantics/publishedVersio

    Towards personalized interaction and corrective feedback of a socially assistive robot for post-stroke rehabilitation therapy

    Get PDF
    A robotic exercise coaching system requires the capability of automatically assessing a patient’s exercise to in teract with a patient and generate corrective feedback. However, even if patients have various physical conditions, most prior work on robotic exercise coaching systems has utilized generic, pre-defined feedback. This paper presents an interactive approach that combines machine learning and rule-based models to automatically assess a patient’s rehabilitation exercise and tunes with patient’s data to generate personalized corrective feedback. To generate feedback when an erroneous motion occurs, our approach applies an ensemble voting method that leverages predictions from multiple frames for frame-level assessment. According to the evaluation with the dataset of three stroke rehabilitation exercises from 15 post-stroke subjects, our interactive approach with an ensemble voting method supports more accurate frame level assessment (p < 0.01), but also can be tuned with held-out user’s unaffected motions to significantly improve the perfor mance of assessment from 0.7447 to 0.8235 average F1-scores over all exercises (p < 0.01). This paper discusses the value of an interactive approach with an ensemble voting method for personalized interaction of a robotic exercise coaching system.info:eu-repo/semantics/publishedVersio

    Finding the optimal time window for increased classification accuracy during motor imagery

    Get PDF
    Motor imagery classification using electroencephalography is based on feature extraction over a length of time, and different configurations of settings can alter the performance of a classifier. Nevertheless, there is a lack of standardized settings for motor imagery classification. This work analyzes the effect of age on motor imagery training performance for two common spatial pattern-based classifier pipelines and various configurations of timing parameters, such as epochs, windows, and offsets. Results showed significant (p ≤ 0.01) inverse correlations between performance and feature quantity, as well as between performance and epoch/window ratio.info:eu-repo/semantics/publishedVersio
    • …
    corecore