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ABSTRACT
Technology-assisted systems to monitor and assess rehabilitation
exercises have an opportunity of enhancing rehabilitation practices
by automatically collecting patient’s quantitative performance data.
However, even if a complex algorithm (e.g. Neural Network) is
applied, it is still challenging to develop such a system due to pa-
tients with various physical conditions. The system with a complex
algorithm is limited to be a black-box system that cannot provide
explanations on its predictions. To address these challenges, this
paper presents a hybrid model that integrates a machine learn-
ing (ML) model with a rule-based (RB) model as an explainable
artificial intelligence (AI) technique for quantitative assessment of
stroke rehabilitation exercises. For evaluation, we collected thera-
pist’s knowledge on assessment as 15 rules from interviews with
therapists and the dataset of three upper-limb stroke rehabilitation
exercises from 15 post-stroke and 11 healthy subjects using a Kinect
sensor. Experimental results show that a hybrid model can achieve
comparable performance with a ML model using Neural Network,
but also provide explanations on a model prediction with a RB
model. The results indicate the potential of a hybrid model as an
explainable AI technique to support the interpretation of a model
and fine-tune a model with user-specific rules for personalization.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools;
• Applied computing → Health care information systems.
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1 INTRODUCTION
Supervised physical rehabilitation sessions are one of effective ways
to improve the functional ability of patients with musculoskeletal
and neurological disorders (e.g. stroke) [18]. However, as therapists
have limited availability, they often prescribe in-home rehabilita-
tion, where patients perform exercises themselves [3]. Therapists
mainly rely on a patient’s self-report to discuss patient’s process
and adjust a treatment intervention [18]. Without any quantita-
tive performance data, therapists encounter difficulty with making
informed decision on patient’s intervention.

With recent improvement on sensor and machine learning (ML)
techniques, researchers have demonstrated the feasibility to de-
velop a technology-assisted rehabilitation monitoring system that
can provide objective kinematic analysis on patient’s functional
status to support therapist’s decision making and improve reha-
bilitation practices [17, 25]. Most related work on human activity
recognition and rehabilitation assessment focuses on improving
the performance of a ML model by applying complex algorithms
[9, 15, 19]. However, it is challenging to derive a model that can
replicate therapist’s monitoring and assessment due to various con-
ditions of patients. In addition, as a model with complex algorithms
cannot explain its prediction to support therapist’s decision making,
therapists can lose trust on it and abandon its usage [13, 17].

This paper presents a hybrid model that integrates a data-driven,
machine learning (ML) model with a rule-based (RB) model us-
ing a weighted average ensemble technique [2, 14, 16] to assess
the quality of motion. For the development, we conducted a semi-
structured interview with therapists to elicit their knowledge of
assessing rehabilitation exercises into 15 rules and collected the
dataset of three upper-limb exercises from 15 post-stroke and 11
healthy subjects and the annotations of the dataset from therapists.
Our experimental results demonstrate that a hybrid model outper-
forms a rule-based model, and achieves comparable performance
with a data-driven ML model using Neural Network while provid-
ing a possibility of interpreting a model by analyzing rules of the
RB model to fine-tune a model for personalization.

Although prior work demonstrated the feasibility of monitoring
and assessing rehabilitation exercises [15, 25], it is still challenging
to develop a system that can be utilized by therapists [13, 17]. As
a first step to support deployment of such a system in practice,
this paper presents a hybrid model as an explainable artificial in-
telligence (AI) technique and compare it with two widely applied
techniques: data-driven machine learning (ML) and rule-based (RB)
models. This work aims to broaden knowledge on an explainable
AI technique for human activity recognition and understanding
(e.g. quantitative assessment of stroke rehabilitation exercises).
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2 RELATEDWORK
Researchers have investigated the possibility of automatically mon-
itoring and assessing chronic diseases with computational models
[15, 25] to provide patients feedback without the presence of a
therapist and supplement therapist’s decision making on patient’s
treatment with quantitative data [17]. The approaches of these com-
putational models can be categorized into either a rule-based (RB)
or machine learning (ML) model.

A rule-based (RB) model requires the engagement of domain
experts to derive a set of monitoring rules [14]. For example, Huang
conducted an experiment on whether an authoring tool can support
therapists to specify repetitions and joint angles for monitoring
knee rehabilitation exercises [12]. This rule-based approach can be
easily modularized and flexibly recombined to develop a customized
monitoring model. However, it is time consuming to manually
review a large amount of sensor measurements and derive a set of
rules to monitor the status of an individual. In addition, it is difficult
to articulate therapist’s decision making on complex and abstract
concepts into a set of rules.

Alternative approach is to utilize a machine learning algorithm
with labeled sensor data [14]. Although this approach has the ben-
efit of automatically learn a meaningful function (e.g. Neural Net-
works) to assess the quality of motion [5, 15], it is challenging to
replicate therapist’s evaluation due to patients with various physi-
cal conditions. In addition, this approach with a complex algorithm
cannot provide explanations on its predictions to support thera-
pist’s decision making [10], which can exacerbate therapist’s user
experience and impede its adoption in practices [13, 17].

Explainability has been an actively explored by researchers to
create a better machine learning model with improved transparency
and user acceptance [4, 6, 7]. However, it is still challenging to get
full interpretation on how a complex model works [1]. Holzinger de-
scribes the necessity of constructing contextual explanatory models
on real-world phenomena for an explainable artifical intelligence
(AI) [11]. As a rule-based (RB) approach has the benefit of being
comprehensible, this paper hypothesizes that such a RB model can
serve as a contextual explanatory model that can supplement a
complex machine learning (ML) model. This paper derives a hybrid
approach that integrates aMLmodel with an interpretable RBmodel
to increase the interpretability of a model. This work contributes
to increase knowledge on an explainable artificial intelligence (AI)
technique for human activity recognition and understanding (e.g.
quantitative assessment of stroke rehabilitation exercises).

3 SPECIFICATIONS OF THE STUDY FOR
STROKE REHABILITATION

We selected a probe domain as stroke, which is the second leading
cause of death and third most common contributor to disability [8].
We had iterative discussion with three therapists (𝜇 = 6.33, 𝜎 = 2.05
years of experience in stroke rehabilitation) in Table 1 and specified
the designs of our study on stroke rehabilitation: three upper-limb
exercises and performance components for assessment [17].

3.1 Three Task-Oriented Upper Limb Exercises
Three upper-limb stroke rehabilitation exercises (Figure 1) are rec-
ommended by therapists due to their correspondence with major

Table 1: The participants of the specification, of the annota-
tion, of the rule elicitation (ElicitRule)

ID Studies # of Years in
Stroke RehabSpecification Annotation ElicitRule

TP1 6
TP2 4
TP3 9

(a) (b) (c)

Figure 1: (a) Exercise 1 (E1): ‘Bring a Cup to the Mouth’ (b)
Exercise 2 (E2): ‘Switch a Light On’ (c) Exercise 3 (E3): ‘Move
a Cane Forward’

motion patterns [17]: elbow flexion for Exercise 1, shoulder flexion
for Exercise 2, elbow extension for Exercise 3. For Exercise 1, a
subject has to raise subject’s wrist to the mouth as if drinking water
with a cup. For Exercise 2, a subject has to pretend touching a light
switch on the wall. For Exercise 3, a subject has to practice the
usage of a cane by extending subject’s elbow in the seated position.

3.2 Performance Components
Three common performance components are identified to assess
the quality of motion [17]: ‘Range of Motion (ROM)’, ‘Smoothness’,
and ‘Compensation’, which are based on commonly used stroke
assessment tools (i.e. Fugl Meyer Assessment [23] and Wolf Motor
Function Test [24]). The ‘ROM’ indicates how closely a patient per-
forms a task-oriented exercise. The ‘Smoothness’ checks the degree
of trembling and irregular movement of joints while performing
an exercise. The ‘Compensation’ monitors whether a patient per-
forms any compensated movements to achieve a target movement.
For instance, a patient might elevate his/her shoulder to raise the
affected hand [17]. Each patient might have different compensated
movements based on patient’s functional status: one patient might
elevate shoulder while rotating trunk and the other patient might
elevate shoulder while leaning trunk backward [17]. We denote
the correct/normal performance component as 𝑌 = 1 and incor-
rect/abnormal performance component as 𝑌 = 0.

3.3 Kinematic Features
We represent an exercise motion with sequential joint coordinates
from a Kinect v2 sensor (Microsoft, Redmond, USA) and extract
various kinematic features [15].

For the ‘ROM’, we compute joint angles (e.g. elbow flexion, shoul-
der flexion, elbow extension) and normalized relative trajectory
(i.e. Euclidean distance between two joints - head and wrist, head
and elbow). For the ‘Smoothness’, we compute the following speed
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related features: speed, acceleration, jerk, zero crossing ratio of
acceleration and jerk, and Mean Arrest Period Ratio (the portion
of the frames when speed exceeds 10% of the maximum speed)
[22]. As we have upper-limb exercises, we computed these speed
related features on wrist and elbow joints. For the ‘Compensation’,
we compute joint angles (i.e. the elevated angle of shoulder, the
tilted angle of spine, and shoulder abduction) and normalized tra-
jectories (distances between joint positions of head, spine, shoulder
in x, y, z axis from the initial to current frame).

A moving average filter with the window size of five frames is
applied to reduce noise of acquiring joint positions from a sensor
similar to [15]. Given an exercise motion, we compute a feature
matrix (F ∈ 𝑅𝑡×𝑑 ) with 𝑡 frame and 𝑑 features and statistics (i.e.
max, min, range, average, and standard deviation) over all frames of
the exercise to summarize a motion into a feature vector (X ∈ 𝑅5𝑑 ).

4 QUANTITATIVE ASSESSMENT OF
REHABILITATION EXERCISES

4.1 Machine Learning (ML) Model
A machine learning (ML) model utilizes a supervised learning al-
gorithm to predict the quality of motion or compute the posterior
probability of being normal/correct, 𝑃𝑃𝑀 = 𝑃 (𝑌 = 1|X) on each
performance component, where X refers to the feature vector of
an exercise motion and 𝑌 ∈ {0, 1} describes the correctness on
a performance component of a motion. We explore various tradi-
tional algorithms [15]: Decision Tree (DT), Linear Regression (LR),
Support Vector Machine (SVM), Neural Network (NN) using the
‘Scikit-learn’ [21] and the ‘PyTorch’ libraries [20].

For DT, Classification and Regression Trees (CART) is utilized to
build prune trees. For LR, we apply 𝐿1, 𝐿2 regularization or linear
combination of 𝐿1 and 𝐿2 (ElasticNet with 0.5 ratio) to avoid over-
fitting. For SVM, we apply either linear or Radial Basis Function
(RBF) kernels with penalty parameter, 𝐶 = 1.0. NN is trained while
grid-searching over various architectures (i.e. one to three layers
with 32, 64, 128, 256, 512 hidden units) and different learning rates
(i.e. 0.0001, 0.005, 0.001, 0.01, 0.1). NN applies the ‘ReLu’ activation
functions and ‘AdamOptimizer’ and is trained until the tolerance
of optimization is 0.0001 or 200 iterations.

4.2 Rule-based (RB) Model
A rule-based (RB) model utilizes a set of feature-based rules from
therapists to estimate the quality of motion. For the development,
we conducted a semi-structured interview with two therapists (Ta-
ble 1) to elicit their knowledge of assessing stroke rehabilitation
exercises, which is formalized as 15 independent if-then rules. For
example, the rule of the ‘ROM’ for Exercise 1 is specified as follows:

𝑌 =

{
1 if 𝑝𝑚𝑎𝑥 (𝑤𝑟, 𝑐𝑦) >= 𝑝𝑚𝑎𝑥 (𝑠𝑝𝑠ℎ, 𝑐𝑦)
0 else

where 𝑝 ( 𝑗, 𝑐) indicates a joint position with a joint 𝑗 (e.g. wrist (𝑤𝑟 )
and spine shoulder, the top of spine, (𝑠𝑝𝑠ℎ)) and the coordinate of a
joint, 𝑐 in the set 𝐶 ∈ {𝑐𝑥 , 𝑐𝑦, 𝑐𝑧 }. 𝑌 denotes the predicted label on
a performance component. This rule compares the maximum posi-
tion of wrist joint, 𝑝𝑚𝑎𝑥 (𝑤𝑟, 𝑐𝑦) with that of spine shoulder joint,

𝑝𝑚𝑎𝑥 (𝑠𝑝𝑠ℎ, 𝑐𝑦) in the y-coordinate to roughly estimate whether a
patient achieves a target position of Exercise 1 (Figure 1a).

A rule-based (RB) model computes a score of being correct on
performance component as follows:

𝑃𝑅𝐵 =
1
|R|

∑
𝑟 ∈R

min( 𝑓𝑟
𝜏𝑟
, 1) (1)

where 𝑓𝑟 indicates the feature value of a rule 𝑟 from a exercise
motion (e.g. 𝑝𝑚𝑎𝑥 (𝑤𝑟, 𝑐𝑦) for the example above), 𝜏𝑟 describes the
threshold value of a rule 𝑟 (e.g. 𝑝𝑚𝑎𝑥 (𝑠𝑝𝑠ℎ, 𝑐𝑦) for the example
above).R describes the set of rules from the therapists. min function
is applied so that this equation assigns a value of 1 if the feature
value of a rule exceeds the threshold of that rule. Otherwise, the
equation normalizes the feature value of a rule with the threshold
of a rule to compute the likelihood of being correct.

4.3 Hybrid Model
A hybrid model (HM) applies a weighted average, ensemble tech-
nique [2, 14, 16] to combine two perspectives on assessment : a
data-driven, machine learning (ML) model and a rule-based (RB)
model from therapists. The performance of each model (i.e. F1-score
in [0, 1]) is utilized as the weight of each model. A hybrid model
computes the score of being correct, 𝑃𝐻𝑀 = 𝑃 (𝑌 = 1|X) as follows:

𝑃𝐻𝑀 =
𝜌𝑚𝑙

𝜌𝑚𝑙 + 𝜌𝑟𝑏
𝑃𝑀𝐿 + 𝜌𝑟𝑏

𝜌𝑚𝑙 + 𝜌𝑟𝑏
𝑃𝑅𝐵 (2)

where 𝑃𝑀𝐿 and 𝑃𝑅𝐵 indicate the scores of ML and RB models and
𝜌𝑚𝑙 and 𝜌𝑟𝑏 describe F1-scores of ML and RB models respectively.

5 DATASET OF THREE EXERCISES
The dataset of three exercises is collected from 15 post-stroke and
11 healthy subjects using a Kinect v2 sensor [15]. During the data
collection, a sensor was located at the height of 0.72m above the
floor and 2.5m away from a subject and recorded trajectory of
joints and video frames at 30 Hz. The starting and ending frames
of exercise movements were manually annotated.

After signing the consent form, a subject participated in the
data collection. Fifteen post-stroke patients (2 females) with diverse
functional abilities from mild to severe impairment (37 ± 21 out
of 66 Fugl Meyer Scores [23]) performed 10 repetitions of each
exercise with both affected and unaffected sides. Eleven healthy
subjects (1 female) performed 15 repetitions of each exercise with
their dominant sides.

Two therapists (TP 1 and TP 2 in Table 1) annotated the dataset to
implement our approach and compute therapist’s agreement level.
They individually watched the recorded videos of patient’s exercise
motions and annotated the performance components of exercise
motions in the dataset. For evaluation, we utilize the annotation
of therapist 1 (TP 1), who evaluated patient’s functional ability
with Fugl Meyer Assessment, as the ground truth. The annotation
of therapist 2 (TP 2) is compared with that of TP1 to measure
therapist’s agreement using F1-scores (TPA in Table 2).

6 RESULTS
The implementation of models is evaluated with leave-one-subject-
out cross validation on post-stroke patients, which trains a model
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with data from all subjects except one testing subject and tests a
model with affected motions of the left-out post-stroke subject.

Table 2 summarizes the performance of models, which measures
an agreement with the annotation of therapist 1 (TP 1) by comput-
ing average F1-scores on performance components of three exer-
cises. The parameters of Neural Networks (i.e. hidden layers/units
and learning rate) that achieve the best F1-score during leave-one-
subject-out cross validation are summarized in Table 3.

Table 2: Performance (F1-scores) of machine learning (ML)
models with various algorithms, rule-based (RB)models, hy-
brid models (HM), and therapist’s agreement (TPA)

Exercise 1 (E1) Exercise 2 (E2) Exercise 3 (E3) Overall

ML - DT 0.6901 ± 0.0405 0.7645 ± 0.0867 0.6488 ± 0.0412 0.7011 ± 0.0769

ML - LR 0.7246 ± 0.0593 0.6430 ± 0.0982 0.7267 ± 0.0391 0.6981 ± 0.0801

ML - SVM 0.7232 ± 0.0364 0.6971 ± 0.0891 0.7410 ± 0.0052 0.7204 ± 0.0585

ML - NN 0.8632 ± 0.0816 0.8388 ± 0.0518 0.7818 ± 0.0096 0.8279 ± 0.0605

RB 0.6148 ± 0.1702 0.6932 ± 0.1630 0.4384 ± 0.1569 0.5821 ± 0.1066

HM 0.8437 ± 0.0697 0.7545 ± 0.0561 0.7812 ± 0.0479 0.7931 ± 0.06440

TPA 0.8120 ± 0.1458 0.7790 ± 0.1324 0.7654 ± 0.1382 0.7854 ± 0.0195

Table 3: Parameters of Neural Networks

Hidden Layers and Units / Learning Rate
ROM Smooth Comp

E1 (32, 32, 32) / 0.1 (16) / 0.0001 (256, 256) / 0.1

E2 (256) / 0.1 (512, 512) / 0.1 (128) / 0.1

E3 (256) / 0.1 (64, 64) / 0.001 (128, 128) / 0.1

For the machine learning (ML) models, the performance of a
model is inversely proportional to the interpretability of a model
similar to [10]. ML models with complex algorithms (i.e. Support
Vector Machine, ML-SVM or Neural Network, ML-NN) perform
better than ML models with interpretable algorithms (e.g. Decision
Trees, ML-DT or Linear Regression, ML-LR) while sacrificing the
interpretability on a model. Specifically, ML models with Neural
Networks (ML-NN) outperform ML models with other algorithms:
Decision Trees, ML-DT (0.7011 average F1-scores), Linear Regres-
sion, ML-LR (0.6981 average F1-scores), Support Vector Machine,
ML-SVM (0.7204 average F1-scores). ML-NN achieves a good agree-
ment level with therapist 1 (TP 1)’s annotation (i.e. 0.8279 average
F1-scores over three exercises), which is 0.04 higher average F1-
score than therapist’s agreement (TPA) between TP 1 and TP2 (i.e.
0.7854 average F1-scores over three exercises).

In contrast, the rule-based (RB) model achieves the lowest agree-
ment level with therapist 1’s annotation: 0.5821 average F1-scores
over three exercises. According to further analysis on the RB model,
we found that such low performance occurred, because elicited
rules from therapists are generic and not tuned for individuals with
different physical conditions. For instance, one rule of monitoring
the ‘Smoothness’ is to check whether the zero-crossing ratio of a
wrist acceleration (i.e. the period of a motion, in which a sign of ac-
celeration changes) on the y-axis exceeds 20% or not. However, we

observed that some smoothly coordinated motions from patients
have 25 - 35 % ratio on this feature and mis-classified as ‘Incorrect’.
This implies the necessity of generating personalized rules for pa-
tients with various physical characteristics and functional abilities.
Thus, we expect if a system can present patient’s feature values on
rules to therapists, therapists might be able to tune these generic
rules for personalized rehabilitation assessment [16].

The hybrid model (HM) combines the machine learning model
with Neural Networks (ML-NN) and the rule-based (RB) model
and achieves 0.7931 average F1-scores over three exercises. The
performance of the HM is 0.03 lower average F1-scores than that of
the machine learning model with with Neural Network (ML-NN).
Although combining two perspectives on assessment (i.e. ML-NN
and RB models) does not improve the performance of a model
due to the RB models with generic rules, the HM still achieves
higher performance than ML models with other algorithms (i.e.
Decision Tree, Linear Regression, Support Vector Machine). Com-
pared to ML-NN, the HM has a potential benefit of interpreting a
model by analyzing rules of the RB model and fine-tuning a model
with patient-specific rules [16]. In addition, the HM achieves good
agreement with therapist 1’s annotation, which is equally good
with therapist’s agreement (TPA) between TP 1 and TP 2. The HM
shows a potential to consistently replicate therapist’s assessment.

7 CONCLUSION
In this paper, we present a hybrid model that integrates a data-
driven, machine learning (ML) model with an interpretable rule-
based (RB) model from therapists as an explainable artificial intelli-
gence (AI) technique for quantitative assessment of stroke rehabili-
tation exercises, and compare it with two widely used approaches of
prior work (i.e. ML and RB models). Our results show that a hybrid
model can achieve good performance that is comparable to the per-
formance of the ML model with Neural Network (ML-NN), but also
provides an opportunity of interpreting a model by analyzing rules
of the RB model and tuning a generic rule for personalized rehabil-
itation assessment. Yet, a further study is necessary to investigate
the feasibility of presenting features and tuning a model.

In contrast to most related work on modeling and understanding
human activities (e.g. exercises) that focuses on improving the per-
formance of a model by applying a complex deep learning model
[9, 15, 19], our work highlights the importance on creating an ex-
plainable model to support the deployment of a model in practice.
We believe this study on a hybrid model can be a valuable reference
on an explainable artificial intelligence (AI) technique for human ac-
tivity recognition and understanding (e.g. quantitative assessment
of rehabilitation exercises).
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