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Abstract: Motor imagery classification using electroencephalography is based on feature extraction over a length of
time, and different configurations of settings can alter the performance of a classifier. Nevertheless, there
is a lack of standardized settings for motor imagery classification. This work analyzes the effect of age on
motor imagery training performance for two common spatial pattern-based classifier pipelines and various
configurations of timing parameters, such as epochs, windows, and offsets. Results showed significant (p
≤ 0.01) inverse correlations between performance and feature quantity, as well as between performance and
epoch/window ratio.

1 INTRODUCTION

In recent decades, Brain-Computer Interfaces (BCIs)
have been used in novel neurorehabilitative tech-
niques, yielding promising results in terms of motor
recovery [Cervera et al., 2018]. The use of BCIs in
neurorehabilitation allows the recruitment and activa-
tion of motor regions through Motor Imagery (MI),
without the need of active movement. This could
potentially result in neuro-plasticity changes in ar-
eas considered to be damaged from a stroke [Bai
et al., 2020]. When combined with serious games
and Virtual Reality (VR), BCIs allow for a more in-
tensive neurorehabilitation [Putze, 2019], encourag-
ing patients via immediate feedback [Mubin et al.,
2020] and immersing them in engaging, virtual en-
vironments [Khan et al., 2020]. One important chal-
lenge with neurorehabilitation is the timing and effi-
cacy of feedback delivery relating to MI. Feedback
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delivery plays an important role in BCIs, and effi-
ciently using proprioceptive feedback can improve
BCI performance significantly [Ramos-Murguialday
et al., 2019]. During learning, feedback provided to
close the sensorimotor loop should be associated with
a MI event to facilitate the recreation of a more re-
alistic and authentic sensation. Similarly, feedback
provided during online sessions should be delivered
as soon as possible in response to a MI event.

The practice of detecting and classifying MI can
be challenging due to the variability and uniqueness
of each EEG signal. According to [Ortner et al.,
2015], 35% of participants obtained a classification
accuracy lower than 70% with only 65% of people
controlling MI-based BCI adequately (≥ 70%). The
inability to replicate a standard pattern or brain net-
work topology, known as illiteracy, has a negative im-
pact on MI performance classification [Ahn and Jun,
2015]. To face this challenge, researchers use strate-
gies for the recruitment of participants to help bypass
BCI illiteracy [Ahn et al., 2013], but this is not an op-
tion when using BCI as a neurorehabilitative tool for
stroke patients, because the impaired neural pathways
prevent the use of screening strategies based on BCI
illiteracy, and the use of screening strategies will re-



strict the usability impact to a particular group with a
certain type of lesion.

Another way researchers are tackling the chal-
lenges of MI detection and classification is by us-
ing machine learning tools to create methodologies
or pipelines that can be generalized across all users.
The most common methodologies use frequency
features or sensory motor rhythms (SMR), includ-
ing event-related synchronization/desynchronization
(ERS/ERD) [Padfield et al., 2019]. Common Spa-
tial Patterns (CSPs) algorithm is a feature extrac-
tion method that can learn spatial filters maximizing
the discriminability of two classes. CSP filters are
widely used to reduce data dimensionality for lighter
data processing and maximize the discriminability of
classes, for instance, right versus left arm movement
or arm versus leg movement. They also express data
as a combination of a reduced number of compo-
nents [Ai et al., 2018]. Combined with linear discrim-
inant analysis (LDA), CSP and LDA, are the preferred
pipeline and especially useful during online rehabili-
tation sessions [Lotte et al., 2018].

Even with improved techniques and methodolo-
gies, working with MI is challenging because MI clas-
sification is difficult to generalize and to improve. For
instance, studies have performed different time set-
tings for signal analyses [Chen et al., 2020, Wang
et al., 2020], and it is known that ERS/ERD could last
for several seconds following the stimulus presenta-
tion [Pfurtscheller and Lopes, 1999]. Hence, there is
a lack of standardized settings for MI due to the vari-
ability seen across subjects [Wang et al., 2020]. Most
BCI research is done with healthy, young participants
whereas the stroke population tends to be elderly or
aged. Therefore, we designed a study to investigate if
our findings generalize to an older population.

In the context of a serious game developed for mo-
tor rehabilitation based on MI, we studied the effect of
age on MI signals and identified the optimal pipeline
and time parameter settings in comparison to a control
group of healthy individuals.

2 METHODS

To find the optimal configuration and time parameter
settings, we have designed a set of different config-
urations and tested them with NeuRow, a BCI train-
ing paradigm in VR, designed for upper-limb motor
rehabilitation [Vourvopoulos et al., 2016]. The fol-
lowing subsections describe the software, equipment,
data acquisition, and processing pipelines we used for
this study.

2.1 NeuRow

NeuRow uses MI to control avatar movement and
haptic feedback in order to increase the sense of em-
bodiment of the user in a closed visual and senso-
rimotor loop [Vourvopoulos et al., 2019]. With the
use of a head-mounted or a desk display, the game
shows the player in a first-person perspective as an
avatar in a kayak floating on a body of water. Neu-
Row consists of two stages: training and real-time
control. The training stage uses signal processing
and signal features to train a system to separate EEG
signals according to desired events, specifically right
and left hand MI. The MI training stage is an adap-
tation of the Graz paradigm, using directional arrows
[Pfurtscheller et al., 2003]. Participants perform MI
while observing the NeuRow avatar row to the left
or right for a total of 20 trials per side, following the
training block paradigm shown in Fig. 1.

Figure 1: Training Block paradigm

2.2 Setup

The full setup includes a desktop computer, the Neu-
Row game, an Oculus Rift VR system, the EEG sys-
tem, and the custom-made haptic feedback system de-
scribed in [Vourvopoulos et al., 2016], as is shown in
Fig. 2. OpenVibe [Renard et al., 2010] was used to
translate MI events into game commands for control-
ling the NeuRow avatar via a Virtual-Reality Periph-
eral Network. Four stages constitute MI translation:
data acquisition, spatial filter training, classifier train-
ing, and online game-play.

2.3 Participants

All participants are healthy with no known neurolog-
ical clinical history. The participants have been re-
cruited based on their motivation to participate in the
study and divided in two groups: the control group



Figure 2: NeuRow setup: A) EEG system, B) The Oculus
Rift DK1 Head-Mounted Display, C) Haptic feedback sys-
tem, D) NeuRow BCI-VR task. [Vourvopoulos, 2018].

and the age-matched group. To study the applicability
of our findings for stroke participants and under the
approval of the ethical committee at the Hospital of
Madeira, Nélio Mendonça (SESARAM), the spouses
of stroke patients were recruited as age-matched par-
ticipants to match the typical age of stroke survivors.
The control group consists of six young, healthy par-
ticipants with an average age of 25 ±5.33 years, 5
males and 1 female. The age-matched group consists
of 5 females and 1 male with an average age of 51.33
±4.97 years. All but one of the participants (one from
the control group) are right-handed according to the
Edinburgh inventory [Oldfield, 1971].

2.4 Data Acquisition

EEG data was acquired using OpenVibe’s acquisi-
tion server and 32 EEG channels with a sampling
frequency of 500Hz and are downsampled to 250Hz.
The control participants’ datasets are acquired with
Liveamp 32 EEG amplifier (Brain Products GmbH,
Munich, Germany) at IST in Lisbon, Portugal. The
age-matched participants’ datasets was acquired with
a wireless g.Nautilus from g.tec at the Madeira In-
teractive Technologies Institute in Funchal, Portugal.
Participants went through 20 trials per side doing MI
while watching the avatar. Common electrodes for
both groups: FC5, F3, Fz, F4, FC6, C3, Cz, C4,
CP5, CP1, CP2, CP6, P3, Pz, and P4. Age-matched
group included PO3, PO4, C1, and C2. Peripheral
electrodes (Fp1, Fp2, O1, O2, among others) are ex-
cluded from data processing to reduce the presence of
artifacts. The electrode impedances are checked using
the g.needAccess software from g.tec (g.tec medical
engineering GmbH, Austria).

2.5 Processing Pipeline

In the following, the term pipeline, as outlined in this
paper, refers to the processing structure used in the
classifier training scenario. Two different processing

pipelines, both with the same LDA classifier type, are
used for comparing classifier performance in Open-
Vibe. These are referred to as 2-CSP-Boxcar and 4-
CSP-Hamming:

• The 2-CSP-Boxcar pipeline, applied in [Sury-
otrisongko and Samopa, 2015], has a classifier
that is based on the power signal of a two-
dimensional CSP filter. It extracts power from
both output signals of the CSP filter during the
sliding window period, according to Equation (1)
in which x represents an output signal from the
CSP filter.

2−CSP−Boxcar f eature = log(1+ x2) (1)

• The 4-CSP-Hamming pipeline, explained in
[Müller-Gerking et al., 1999] and applied in [Ir-
imia et al., 2018], uses the variance contribution
of each signal from a four-dimensional CSP fil-
ter. It extracts the contribution of each of the four
CSP output signals, as shown in Equation (2) [Ir-
imia et al., 2018], with sub-index p representing
each output signal.

Hamming f eature = log

(
VARp

∑
4
p=1VARp

)
(2)

EEG data processing for the two pipelines is exe-
cuted using CSP filter training and classifier training
scenarios in OpenVibe. Raw EEG datasets are filtered
from 8 to 30 Hz (including the Alpha and Beta bands)
in the respective CSP filter training scenarios and then
spatially filtered using the previously trained CSP fil-
ter for both pipelines. The CSP filter reduces the sig-
nal quantity obtained from the number of the EEG
channels to a fixed number of representative outputs,
and it acquires weights for the EEG channels’ signals
according to their contribution to each event. Each
EEG channel’s signal is expressed as a linear combi-
nation of the representative outputs. The use of fre-
quency filters limits the signal content to frequencies
of interest, helping to denoise the desired signal and
eliminate potential constant offset, linear trending, or
noise that is caused by the power supply (50/60 Hz)
present in the signal.

The 2-CSP-Boxcar pipeline uses the filtered data
to train the CSP filter to yield two output signals. The
4-CSP-Hamming pipeline, however, yields 4 output
signals. After the CSP filtering, left and right MI tri-
als are windowed either with a Boxcar window or a
Hamming window, respectively. Next, EEG feature
extraction is applied to obtain the power and variance
characteristics to represent the signal. Finally, the ex-
tracted features from both pipelines are used to train
a LDA classifier to identify right and left MI trials.



2.6 Pipeline Settings

To identify the optimal configuration of the pipelines
described above, we study a number of settings. As
shown in Fig. 3, there are four main settings to con-
sider for the proposed pipelines: epoch length, epoch
offset time, sliding window length, and sliding win-
dow interval. Here, epoch length is the length of
the signal used for feature extraction; epoch offset
time determines the start of an epoch; sliding window
length is the length of the window that slides across
the selected epoch; and sliding window interval (mov-
ing steps) is the time between the start of each sliding
window. Sliding window displacement does not exist
when the sliding window has the same length as the
epoch. Relations between the sliding window length
and epoch length determine the quantity of data points
of the calculated or extracted EEG features as power
and variance contribution.

Figure 3: Parameters of a sliding window.

2.7 Data Analysis

The acquired EEG datasets are used to train the 2-
CSP-boxcar and 4-CSP-Hamming pipelines for vari-
ous combinations of time parameters. The classifier’s
accuracy performance for each configuration is com-
puted using 5-fold cross-validation, as the average of
the positive predictive value and the negative predic-
tive value from the confusion matrix’s classifier per-
formance results. The association between the num-
ber of features used and the resulting accuracy per-
formance is tested using Pearson’s correlation. The
same is done for the relation between accuracy per-
formance and epoch/window ratios. Double-tailed t-
tests are used to test for significant results.

The number of features’ data points (from now on
is shortened as only features) that feed the classifier
depends on the epoch lengths, the window lengths,
the number of trials, and the number output channels
from the CSP filter, as determined by Equation (3).

n f eatures =

∥∥∥∥ l
p

(w
l
+1
)
+1
∥∥∥∥∗trials∗CSPout puts (3)

In Equation (3), l is epoch length, w stands for
sliding window length, p is sliding window interval
or moving steps, ‖ ‖ denotes floor function, * means
product, trials represents the number of executed tri-
als during MI, and CSPout puts represents the number
of CSP signals.

3 RESULTS

To study the effects of age on MI and how pipeline
settings affect classifier performance, the results sec-
tion is broken down into: an analysis of features
and their corresponding classification performance,
pipeline performance analysis.

3.1 Features and Classifier Performance

For the analysis of this section, we consider the
following variables: pipeline (2-CSP-Boxcar and 4-
CSP-Hamming), epoch length (1, 2, 4 s), sliding win-
dow length (0.5, 1, 2, 4 s), offset (0.1, 0.5 s), and
number of features (Equation (3)), keeping the sliding
window time interval as 50 ms. The combination of
these parameters totals 36 different configurations to
study. Fig. 4 shows the relationship between number
of features and the epoch and sliding window lengths.
The number of features is constant where the epoch
and sliding window lengths are equal. Hereafter,
these configurations are mentioned as epoch-lagged
because they add a time lag. The number of features
increases for longer epoch lengths and shorter sliding
window lengths. Configurations that have longer slid-
ing window lengths than epoch lengths are indicated
as NaN as it is not possible to have a negative quantity
of features.

Figure 4: Number of features per CSP output signal
(CSPout puts = 1) for varying epoch and sliding window
lengths (diagonal lines represent epoch-lagged configura-
tions).

The relationship between number of features and
classifier performance was tested for correlation, find-



ing Inverse relations between number of features and
classifier performance for both pipelines. The anal-
ysis revealed correlations for all configurations to be
between -0.73 and -0.95 (Table 1). Interestingly, we
found a higher correlation between the number of fea-
tures for the age-matched group than for the con-
trol one of about 8%. When comparing the contri-
butions of different pipeline settings (epoch length
and sliding window length) to the classification per-
formance, the correlation analysis revealed that the
epoch length/sliding window length ratio highly cor-
relates with the quantity of used features (r=0.8712,
p=0.002) and performance (-0.77 to -0.98) (Table 2).
Consistent with the previous data, correlations are
generally stronger for age-matched controls.

Table 1: Correlation values between classifier performance
and quantity of features

Offset = 0.1 s Offset = 0.5 s
r-value Boxcar Hamming Boxcar Hamming

Age-matched −0.94∗∗ −0.93∗∗ −0.95∗∗ −0.94∗∗

Controls −0.86∗∗ −0.85∗∗ −0.73∗ −0.86∗∗

∗p<0.05; ∗∗ p<0.01

Table 2: Correlation values between classifier performance
and epoch/window length ratio

Offset = 0.1 s Offset = 0.5 s
r-value Boxcar Hamming Boxcar Hamming

Age-matched −0.98∗∗ −0.93∗∗ −0.91∗∗ −0.88∗∗

Controls −0.92∗∗ −0.77∗ −0.82∗∗ −0.92∗∗

∗p<0.05; ∗∗ p<0.01

3.2 Pipeline Performance Analysis

3.2.1 Age-matched Participants

The age-matched group’s performance results show
the highest accuracy percentage of 85% for the 4-
CSP-Hamming pipeline (offset of 0.5 s, epoch and
window lengths of 1 s) (Fig. 5). The best results for all
configurations were achieved with equivalent epoch
and sliding window lengths, which as previously ex-
plained, are the configurations that add a significant
time lag (1 to 4 s), making them unsuitable for appli-
cations that rely on real-time feedback. When we con-
sider only the non-epoch-lagged configurations that
are suitable for real-time feedback, the best perfor-
mance is seen for the 4-CSP-Hamming pipeline at
79.09% with an offset of 0.1 seconds, an epoch length
of 2 seconds, and a window length of 1 second.

Performances for the 2-CSP-Boxcar pipeline were
always lower than for the 4-CSP-Hamming pipeline,

Figure 5: Classifier performance for age-matched group (di-
agonal lines represent epoch-lagged configurations).

both for epoch-lagged configurations (76.67% with an
offset of 0.5 s and epoch and window lengths of 4 s)
and for non-epoch-lagged ones (71.25% with an off-
set of 0.5 seconds, epoch length of 2 seconds, and
window length of 1 second).

3.2.2 Control Participants

Similar to the results of the age-matched group, the
control group’s best results were for the epoch-lagged
configurations. The highest performance was 90% for
the 4-CSP-Hamming pipeline when offset equaled 0.1
seconds. The best result for the non-lagged configu-
rations was also obtained with the 4-CSP-Hamming
pipeline at 79.68% for an offset of 0.1, an epoch
length of 1 second, and a window length of 0.5 sec-
onds (Fig. 6). For the 2-CSP-Boxcar pipeline, the best
lagged configuration was recorded at 74.25% when
offset equaled 0.5 seconds, and the best non-lagged at
72.41% with 0.1 seconds of offset. Interestingly, there
seems to be a tendency for higher accuracies with
smaller epoch/sliding window ratios and for equal ra-
tios, a preference for smaller epochs and shorter slid-
ing window lengths.

4 DISCUSSION

The goal of this study is to shed light on the disparity
of pipelines and classification performances reported
in MI literature, by performing a systematic compar-
ative study of pipelines and their parameters on two
populations. This research is essential for the devel-
opment of MI-based neurorehabilitation systems as
processing pipelines and their specific configurations
yield optimal settings that can generalize from age-
matched participants to stroke patients. Nevertheless,
this study is also relevant for any MI paradigm be-



Figure 6: Classifier performance for control group (diago-
nal lines represent epoch-lagged configurations).

cause it reports on epoch-lagged configurations that
are suitable for applications other than neurorehabili-
tation. Therefore, to understand the behavior and rela-
tion of performance with different pipeline configura-
tions and age groups, this section discusses the corre-
lation between feature quantity and classification per-
formance, accuracy performance between pipelines,
and the impact of age on performance.

4.1 Features and Classifier Performance

The results reveal that classifier performance de-
creases as epoch and sliding window lengths and their
within ratio increase, with significant, negative corre-
lation test results (Table 1, Table 2). These inverse
correlations can be related to overfitting [León et al.,
2020]. The large quantity of features provides the
classifier with too much detail and noise, allowing
the algorithm to overfit the training data. As part
of the training process for the classifier, a portion of
the training data is withheld as new data for cross-
validation testing. Because of this, we are able to
see a negative impact on the classification of unseen
data. This might explain why classifier performance
decreases when feature quantity increases.

4.2 Pipeline Performance

Pipeline performance best results are summarized in
Table 3. Epoch-lagged configurations were tested and
yielded the highest performances. However, they are
inadequate for rehabilitative methods that rely on real-
time feedback because they add a time lag equiva-
lent to the epoch and window length. Online, real-
time feedback induces more pronounced attention and
motor cortical activation; it works as a hybrid con-
trol that augments sensory-feedback processing [Ros
et al., 2014], improving BCI performance when effi-
ciently delivered [Ramos-Murguialday et al., 2019],

and eliminates the need for extensive sessions involv-
ing a high number of trials (> 100) [Ortner et al.,
2015]. Therefore, it is desirable to use non-lagged
configurations with a window length shorter than the
epoch length so that the lag time is as short as the in-
terval length, meaning the classifier output happens at
each sliding interval of the sliding window.
The 4-CSP-Hamming pipeline outperformed the 2-
CSP-Boxcar pipeline for all of the configurations in
both populations. This can be related to the num-
ber of CSP output channels with a slightly better per-
formance seen for configurations with 4 CSP chan-
nels versus 2 CSP channels [Müller-Gerking et al.,
1999]. Nevertheless, both pipeline performances are
in the adequate control range for MI-based BCIs (≥
70%) [Ortner et al., 2015].

4.3 Impact of age on performance

Age matched group obtained similar performance as
control group, with no significant differences for all
tested configurations. Our results show that using
configurations with an epoch/window ratio of 2 ob-
tain similar results to the extended training with high
high number of trials (80 per session) and 6 sessions
during training, whose maximum performance was
80.7% and minimum was 72.4% [Ortner et al., 2015],
and better than 66% for older participants (72.0±8.07
years old) [Chen et al., 2019] with lower SMR later-
alization for MI according to aging processes. This is
promising for neurorehabilitation adapted for stroke
patients because shorter sessions might help alleviate
the exhaustiveness of MI training.

4.4 Limitations

This work had some limitations such as the low num-
ber of participants, equipment differences in both
EEG and VR rendering modalities between popula-
tions and gender unbalance. Moreover, the existence
of pipelines not used in this study, and the applicabil-
ity of the results for a stroke population. The number
of participants in this study, (N=12), might be too low
to achieve a high statistical power, but it is greater
than the number of participants recruited for BCI per-
formance studies that used datasets from BCI com-
petitions (N=4) and have helped to improve classifier
performance. Inconsistencies between the EEG de-
vices and electrode placements might have enhanced
the differences between the two populations. Nev-
ertheless, the protocol used to process the data for
both groups of participants was the same. Impedance
quality was kept on the same level, identical pipelines
were used, and non-statistical differences were found



Table 3: Sum-up of results

MI-performance
Configurations Control Age-matched Diff. between-groups

Epoch-lagged 4-CSP-Hamming 90 85 5
2-CSP-Boxcar 74.25 76.67 -2.42

Diff. between-pipelines 15.75 8.33 X
Non Epoch-lagged 4-CSP-Hamming 79.68 79.09 0.59

2-CSP-Boxcar 72.41 71.25 1.16
Diff. between-pipelines 17.27 7.84 X

Diff. Lagged and non-lagged 4-CSP-Hamming 10.32 5.91 4.41
2-CSP-Boxcar 1.84 5.42 -3.58

between groups. Although it might be interesting
to check with several classes of pipelines, doing a
larger comparison would be impracticable. The age-
matched group is a step closer, but stroke patients may
perform differently due to their specific lesion types.

5 CONCLUSION

Two populations were recruited for the investiga-
tion of age on MI classification, and two CSP-based
pipelines were compared to find the optimal pipeline
settings for improving classifier performance. Classi-
fication performance under multiple pipeline settings
for MI in both groups showed no significant effect for
age. The results confirmed that the number of fea-
tures used to train a classifier depends on the epoch-
window lengths relation. Classifier performance in-
creased when a smaller epoch/window ratio was ap-
plied. However, using an epoch/window ratio equal
to one, introduce a lag in time equal to the length
of the epoch, which is not desirable for online pur-
poses. By investigating various time parameters that
directly affect classification performance, an optimal
pipeline configuration was found comprised of the 4-
CSP-Hamming pipeline using an epoch/window ratio
of 2 and offline of 0.1 seconds for both populations.

5.1 Future work

New datasets will be acquired for the ongoing project,
including from stroke participants, increasing the
population size and the statistical power of the study.
We also plan to compare online classifier performance
versus training classifier performance closing the ac-
curacy gap and achieving a more generalizable classi-
fier.
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de Robótica e Sistemas em Engenharia e Ciência
(UIDB/50009/2020) and Scientific Employment
Stimulus (CEECIND/01073/2018).

REFERENCES

Ahn, M., Cho, H., Ahn, S., and Jun, C. (2013). High
theta and low alpha powers may be indicative of bci-
illiteracy in motor imagery. PLoS One, 8(11):1303–
1309.

Ahn, M. and Jun, S. C. (2015). Performance variation in
motor imagery brain–computer interface: A brief re-
view. Journal of Neuroscience Methods, 243:103–
110. https://doi.org/10.1016/j.jneumeth.2015.01.033.

Ai, Q., Liu, Q., Meng, W., and Xie, S. Q. (2018).
Advanced Rehabilitative Techonology, chapter EEG-
Based Brain Intention Recognition, pages 135–166.
Academic Press. https://doi.org/10.1016/B978-0-12-
814597-5.00006-0.

Bai, Z., Fong, K. N. K., Zhang, J. J., Chan, J., and Ting,
K. H. (2020). Immediate and long-term effects of
bci- based rehabilitation of the upper extremity after
stroke: a systematic review and meta- analysis. Jour-
nal of NeuroEngineering and Rehabilitation, 2:1–20.
https://doi.org/10.1186/s12984-020-00686-2.

Cervera, M. A., Soekadar, S. R., Ushiba, J., del
R. Millán, J., Liu, M., Birbaumer, N., and Garipelli,
G. (2018). Brain-computer interfaces for post-
stroke motor rehabilitation: a meta-analysis. An-
nals of Clinical and Translational Neurology, 5(5).
https://doi.org/10.1002/acn3.544.

Chen, C., Chen, P., Belkacem, A. N., Lu, L., Xu, R., Tan,
W., Li, P., Gao, Q., Shin, D., Wange, C., and Ming,
D. (2020). Neural activities classification of left and
right finger gestures during motor execution and mo-



tor imagery. Brain-Computer Interfaces, pages 1–11.
https://doi.org/10.1080/2326263X.2020.1782124.

Chen, M. L., Fu, D., Boger, J., and Jiang, N.
(2019). Age-related changes in vibro-tactile
eeg response and its implications in bci ap-
plications: A comparison between older and
younger populations. IEEE Transactions on Neu-
ral Systems and Rehabilitation Engineering, 27(4).
https://doi.org/10.1109/TNSRE.2019.2890968.

Irimia, D. C., Ortner, R., Poboroniuc, M. S., Ignat,
B. E., and Guger, C. (2018). High classifica-
tion accuracy of a motor imagery based brain-
computer interface for stroke rehabilitation train-
ing. Frontier in Robotics and AI, 5(130):9.
https://doi.org/10.3389/frobt.2018.00130.

Khan, M. A., Das, R., Iversen, H. K., and Puthussery-
pady, S. (2020). Review on motor imagery
based bci systems for upper limb post-stroke
neurorehabilitation: From designing to applica-
tion. Computers in Biology and Medicine, 123.
https://doi.org/10.1016/j.compbiomed.2020.103843.

León, J., Escobar, J. J., Ortiz, A., Ortega, J., González, J.,
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