13 research outputs found

    Enhanced gut microbiome supplementation of essential amino acids in Diploptera punctata fed low-protein plant-based diet

    Get PDF
    Introduction: Building on our previous work, we investigate how dietary shifts affect gut microbial essential amino acid (EAA) provisioning in the lactating cockroach Diploptera punctata.Method: To that end, we fed cockroaches three distinct diets: a plant-only Gari diet composed of starchy and granulated root tuber Yucca (Manihot esculenta), a dog food diet (DF), and a cellulose-amended dog food (CADF) diet. We anticipated that the high carbohydrate, low protein Gari would highlight increased microbial EAA supplementation to the host.Results: By day 28, we observed distinct profiles of 14 bacterial families in the insect gut microbiomes of the three dietary groups. CADF-fed insects predominantly harbored cellulolytic and nitrogen-fixing bacteria families Streptococcaceae and Xanthomonadaceae. In contrast, Gari-fed insects were enriched in anaerobic lignocellulolytic bacteria families Paludibacteraceae and Dysgonomonadaceae, while DF-fed insects had a prevalence of proteolytic anaerobes Williamwhitmaniaceae and sulfate-reducing bacteria Desulfovibrionaceae. Furthermore, we confirmed significantly higher EAA supplementation in Gari-fed insects than in non-Gari-fed insects based on δ13C-EAA offsets between insect and their diets. The δ13C-EAA offsets between DF and CADF were nearly indistinguishable, highlighting the relevance of using the plant-based Gari in this experiment to unequivocally demonstrate this function in this insect. These results were underscored by lower standard metabolic rate (SMR) relative to the DF insect in Gari-fed (intermediate SMR and dietary quality) and CADF (least SMR and dietary quality) insects.Discussion: The influence of diet on EAA provisioning and SMR responses in insects underscores the need for further exploration into the role of gut microbial functions in modulating metabolic responsesIntroduction Materials and methods Insect rearing and experiment conditions Measurement of carbon dioxide production and standard metabolic rate calculation DNA extraction, sample processing, and Illumina sequencing Mass and SMR data analyses Illumina sequence data processing and analyses Essential amino acid d13C quantification and provisioning Results Dietary effects on body mass change and SMR Dietary effects on the gut microbiome of females Dietary effects on microbial essential amino acid provisioning Discussion Conclusion

    Assessing gut microbial provisioning of essential amino acids to host in a murine model with reconstituted gut microbiomes

    Get PDF
    Gut microbial essential amino acid (EAA) provisioning to mammalian hosts remains a critical yet poorly understood aspect of host-microbe nutritional interactions, with significant implications for human and animal health. To investigate microbial EAA contributions in mice with reconstituted gut microbiomes, we analyzed stable carbon isotopes (¹³C) of six EAAs across multiple organs. Germ-free (GF) mice fed a high-protein diet (18%) were compared to conventionalized (CVZ) mice fed a low-protein diet (10%) following fecal microbiota transplantation 30 days prior and a 20-day dietary intervention. We found no evidence for microbial EAA contributions to host tissues, with ¹³C-EAA fingerprinting revealing nearly identical patterns between GF and CVZ organs. Both groups maintained their expected microbiome statuses, with CVZ gut microbiota dominated by Firmicutes and Bacteroidetes phyla. These findings raise important questions about the functional capacities of reconstituted gut microbiomes. Future studies should investigate longer adaptation periods, varied dietary protein levels, and complementary analytical techniques to better understand the context-dependent nature of microbial EAA provisioning in mammalian hosts.Introduction Methods Experimental design Amino acid delta13C measurements DNA extraction, microbiome sequence generation, and sequence analyses Results Gut microbial EAA supplementation Gut microbiome composition Discussion Conclusio

    Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

    Get PDF
    Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the Cadophora-Mollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.Peer reviewe

    Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface

    No full text

    Trees and Insects Have Microbiomes: Consequences for Forest Health and Management

    No full text
    Purpose of Review Forest research has shown for a long time that microorganisms influence tree-insect interactions, but the complexity of microbial communities, as well as the holobiont nature of both trees and insect herbivores, has only recently been taken fully into account by forest entomologists and ecologists. In this article, we review recent findings on the effects of tree-insect-microbiome interactions on the health of tree individuals and discuss whether and how knowledge about tree and insect microbiomes could be integrated into forest health management strategies. We then examine the effects tree-insect-microbiome interactions on forest biodiversity and regeneration, highlighting gaps in our knowledge at the ecosystem scale. Recent Findings Multiple studies show that herbivore damage in forest ecosystems is clearly influenced by tripartite interactions between trees, insects and their microbiomes. Recent research on the plant microbiome indicates that microbiomes of planted trees could be managed at several stages of production, from seed orchards to mature forests, to improve the resistance of forest plantations to insect pests. Therefore, the tree microbiome could potentially be fully integrated into forest health management strategies. To achieve this aim, future studies will have to combine, as has long been done in forest research, holistic goals with reductionist approaches. Efforts should be made to improve our understanding of how microbial fluxes between trees and insects determine the health of forest ecosystems, and to decipher the underlying mechanisms, through the development of experimental systems in which microbial communities can be manipulated. Knowledge about tree-insect-microbiome interactions should then be integrated into spatial models of forest dynamics to move from small-scale mechanisms to forest ecosystem-scale predictions.CEnter of the study of Biodiversity in AmazoniaCOntinental To coastal Ecosystems: evolution, adaptability and governanceBiosurveillance Next-Gen des changements dans la structure et le fonctionnement des écosystèmesHOlistic Management of Emerging forest pests and Diseases,Role of endosymbiotic bacteria in the long-term evolution of a diverse and globally-distributed aphid genus: a Phylogenomic Analysi
    corecore