67 research outputs found

    Comprehensive evaluation of stool-based diagnostic methods and benzimidazole resistance markers to assess drug efficacy and detect the emergence of anthelmintic resistance : a Starworms study protocol

    Get PDF
    Background : To work towards reaching the WHO goal of eliminating soil-transmitted helminth (STH) infections as a public health problem, the total number of children receiving anthelmintic drugs has strongly increased over the past few years. However, as drug pressure levels rise, the development of anthelmintic drug resistance (AR) is more and more likely to appear. Currently, any global surveillance system to monitor drug efficacy and the emergence of possible AR is lacking. Consequently, it remains unclear to what extent the efficacy of drugs may have dropped and whether AR is already present. The overall aim of this study is to recommend the best diagnostic methods to monitor drug efficacy and molecular markers to assess the emergence of AR in STH control programs. Methods : A series of drug efficacy trials will be performed in four STH endemic countries with varying drug pressure (Ethiopia and Brazil: low drug pressure, Lao PDR: moderate drug pressure and Tanzania: high drug pressure). These trials are designed to assess the efficacy of a single oral dose of 400 mg albendazole (ALB) against STH infections in school-aged children (SAC) by microscopic (duplicate Kato-Katz thick smear, Mini-FLOTAC and FECPAK(G2)) and molecular stool-based diagnostic methods (quantitative PCR (qPCR)). Data will be collected on the cost of the materials used, as well as the time required to prepare and examine stool samples for the different diagnostic methods. Following qPCR, DNA samples will also be submitted for pyrosequencing to assess the presence and prevalence of single nucleotide polymorphisms (SNPs) in the beta-tubulin gene. These SNPs are known to be linked to AR in animal STHs. Discussion : The results obtained by these trials will provide robust evidence regarding the cost-efficiency and diagnostic performance of the different stool-based diagnostic methods for the assessment of drug efficacy in control programs. The assessment of associations between the frequency of SNPs in the beta-tubulin gene and the history of drug pressure and drug efficacy will allow the validation of these SNPs as a marker for AR in human STHs

    A general framework to support cost-efficient fecal egg count methods and study design choices for large-scale STH deworming programs-monitoring of therapeutic drug efficacy as a case study

    Get PDF
    BACKGROUND: Soil-transmitted helminth (STH) control programs currently lack evidence-based recommendations for cost-efficient survey designs for monitoring and evaluation. Here, we present a framework to provide evidence-based recommendations, using a case study of therapeutic drug efficacy monitoring based on the examination of helminth eggs in stool. METHODS: We performed an in-depth analysis of the operational costs to process one stool sample for three diagnostic methods (Kato-Katz, Mini-FLOTAC and FECPAKG2). Next, we performed simulations to determine the probability of detecting a truly reduced therapeutic efficacy for different scenarios of STH species (Ascaris lumbricoides, Trichuris trichiura and hookworms), pre-treatment infection levels, survey design (screen and select (SS); screen, select and retest (SSR) and no selection (NS)) and number of subjects enrolled (100-5,000). Finally, we integrated the outcome of the cost assessment into the simulation study to estimate the total survey costs and determined the most cost-efficient survey design. PRINCIPAL FINDINGS: Kato-Katz allowed for both the highest sample throughput and the lowest cost per test, while FECPAKG2 required both the most laboratory time and was the most expensive. Counting of eggs accounted for 23% (FECPAKG2) or >/=80% (Kato-Katz and Mini-FLOTAC) of the total time-to-result. NS survey designs in combination with Kato-Katz were the most cost-efficient to assess therapeutic drug efficacy in all scenarios of STH species and endemicity. CONCLUSIONS/SIGNIFICANCE: We confirm that Kato-Katz is the fecal egg counting method of choice for monitoring therapeutic drug efficacy, but that the survey design currently recommended by WHO (SS) should be updated. Our generic framework, which captures laboratory time and material costs, can be used to further support cost-efficient choices for other important surveys informing STH control programs. In addition, it can be used to explore the value of alternative diagnostic techniques, like automated egg counting, which may further reduce operational costs. TRIAL REGISTRATION: ClinicalTrials.gov NCT03465488

    Prostate cancer disparities in Black men of African descent: a comparative literature review of prostate cancer burden among Black men in the United States, Caribbean, United Kingdom, and West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>African American men have the highest prostate cancer morbidity and mortality rates than any other racial or ethnic group in the US. Although the overall incidence of and mortality from prostate cancer has been declining in White men since 1991, the decline in African American men lags behind White men. Of particular concern is the growing literature on the disproportionate burden of prostate cancer among other Black men of West African ancestry in the Caribbean Islands, United Kingdom and West Africa. This higher incidence of prostate cancer observed in populations of African descent may be attributed to the fact that these populations share ancestral genetic factors. To better understand the burden of prostate cancer among men of West African Ancestry, we conducted a review of the literature on prostate cancer incidence, prevalence, and mortality in the countries connected by the Transatlantic Slave Trade.</p> <p>Results</p> <p>Several published studies indicate high prostate cancer burden in Nigeria and Ghana. There was no published literature for the countries Benin, Gambia and Senegal that met our review criteria. Prostate cancer morbidity and/or mortality data from the Caribbean Islands and the United Kingdom also provided comparable or worse prostate cancer burden to that of US Blacks.</p> <p>Conclusion</p> <p>The growing literature on the disproportionate burden of prostate cancer among other Black men of West African ancestry follows the path of the Transatlantic Slave Trade. To better understand and address the global prostate cancer disparities seen in Black men of West African ancestry, future studies should explore the genetic and environmental risk factors for prostate cancer among this group.</p

    Entourage: the immune microenvironment following follicular lymphoma

    Get PDF
    In follicular lymphoma, nonmalignant immune cells are important. Follicular lymphoma depends on CD4+ cells, but CD8+ cells counteract it. We hypothesized that the presence of follicular lymphoma is associated with higher CD4+ than CD8+ cell numbers in the tumor microenvironment but not in the immune system. Using flow cytometry, pre-treatment and follow-up CD4/CD8 ratios were estimated in the bone marrow, blood and lymph nodes of untreated follicular lymphoma patients in two independent data sets (N1=121; N2=166). The ratios were analyzed for their relation with bone marrow lymphoma involvement. Bone marrows were also investigated with immunohistochemistry. In either data set, the bone marrow CD4/CD8 ratios were higher in bone marrows involved with lymphoma (P=0.043 and 0.0002, respectively). The mean CD4/CD8 ratio was 1.0 in uninvolved and 1.4 in involved bone marrows. Also higher in involved bone marrows were CD4/CD56 and CD3CD25/CD3 ratios. No blood or lymph node ratios differed between bone marrow-negative and -positive patients. Sequential samples showed increased bone marrow CD4/CD8 ratios in all cases of progression to bone marrow involvement. Immunohistochemistry showed CD4+, CD57+, programmed death-1+, forkhead box protein 3+ and CD21+ cells accumulated inside the lymphoma infiltrates, whereas CD8+, CD56+ and CD68+ cells were outside the infiltrates. This study provides evidence in vivo that the microenvironment changes upon follicular lymphoma involvement

    Therapeutic efficacy of albendazole against soil-transmitted helminthiasis in children measured by five diagnostic methods

    Get PDF
    Preventive chemotherapy (PC) with benzimidazole drugs is the backbone of soil-transmitted helminth (STH) control programs. Over the past decade, drug coverage has increased and with it, the possibility of developing anthelmintic resistance. It is therefore of utmost importance to monitor drug efficacy. Currently, a variety of novel diagnostic methods are available, but it remains unclear whether they can be used to monitor drug efficacy. In this study, we compared the efficacy of albendazole (ALB) measured by different diagnostic methods in a head-to-head comparison to the recommended single Kato-Katz.; An ALB efficacy trial was performed in 3 different STH-endemic countries (Ethiopia, Lao PDR and Tanzania), each with a different PC-history. During these trials, stool samples were evaluated with Kato-Katz (single and duplicate), Mini-FLOTAC, FECPAKG2, and qPCR. The reduction rate in mean eggs per gram of stool (ERR) and mean genome equivalents / ml of DNA extract (GERR) were calculated to estimate drug efficacy.; The results of the efficacy trials showed that none of the evaluated diagnostic methods could provide reduction rates that were equivalent to a single Kato-Katz for all STH. However, despite differences in clinical sensitivity and egg counts, they agreed in classifying efficacy according to World Health Organization (WHO) guidelines. This demonstrates that diagnostic methods for assessing drug efficacy should be validated with their intended-use in mind and that other factors like user-friendliness and costs will likely be important factors in driving the choice of diagnostics. In addition, ALB efficacy against STH infections was lower in sites with a longer history of PC. Yet, further research is needed to identify factors that contribute to this finding and to verify whether reduced efficacy can be associated with mutations in the β-tubulin gene that have previously been linked to anthelmintic resistance.; ClinicalTrials.gov NCT03465488

    Diagnostic performance of a single and duplicate Kato-Katz, Mini-FLOTAC, FECPAKG2 and qPCR for the detection and quantification of soil-transmitted helminths in three endemic countries

    Get PDF
    Because the success of deworming programs targeting soil-transmitted helminths (STHs) is evaluated through the periodically assessment of prevalence and infection intensities, the use of the correct diagnostic method is of utmost importance. The STH community has recently published for each phase of a deworming program the minimal criteria that a potential diagnostic method needs to meet, the so-called target product profiles (TPPs).; We compared the diagnostic performance of a single Kato-Katz (reference method) with that of other microscopy-based methods (duplicate Kato-Katz, Mini-FLOTAC and FECPAKG2) and one DNA-based method (qPCR) for the detection and quantification of STH infections in three drug efficacy trials in Ethiopia, Lao PDR, and Tanzania. Furthermore, we evaluated a selection of minimal diagnostic criteria of the TPPs.; All diagnostic methods showed a clinical sensitivity of ≥90% for all STH infections of moderate-to-heavy intensities. For infections of very low intensity, only qPCR resulted in a sensitivity that was superior to a single Kato-Katz for all STHs. Compared to the reference method, both Mini-FLOTAC and FECPAKG2 resulted in significantly lower fecal egg counts for some STHs, leading to a substantial underestimation of the infection intensity. For qPCR, there was a positive significant correlation between the egg counts of a single Kato-Katz and the DNA concentration.; Our results indicate that the diagnostic performance of a single Kato-Katz is underestimated by the community and that diagnostic specific thresholds to classify intensity of infection are warranted for Mini-FLOTAC, FECPAKG2 and qPCR. When we strictly apply the TPPs, Kato-Katz is the only microscopy-based method that meets the minimal diagnostic criteria for application in the planning, monitoring and evaluation phase of an STH program. qPCR is the only method that could be considered in the phase that aims to seek confirmation for cessation of program.; ClinicalTrials.gov NCT03465488

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore