43,248 research outputs found

    Minimal length and the flow of entropy from black holes

    Full text link
    The existence of a minimal length, predicted by different theories of quantum gravity, can be phenomenologically described in terms of a generalized uncertainty principle. We consider the impact of this quantum gravity motivated effect onto the information budget of a black hole and the sparsity of Hawking radiation during the black hole evaporation process. We show that the information is not transmitted at the same rate during the final stages of the evaporation and that the Hawking radiation is not sparse anymore when the black hole approaches the Planck mass.Comment: Awarded Honorable Mention in the 2018 Gravity Research Foundation Essay Competitio

    What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)?

    Get PDF
    The spread of non-native species is one of the most harmful and least reversible disturbances in ecosystems. Species have to overcome several filters to become a pest (transport, establishment, spread and impact). Few studies have checked the traits that confer ability to overcome these steps in the same species. The aim of the present study is to review the available information on the life-history and ecological traits of the mud snail, Potamopyrgus antipodarum Gray (Hydrobiidae, Mollusca), native from New Zealand, in order to explain its invasive success at different aquatic ecosystems around the world. A wide tolerance range to physico-chemical factors has been found to be a key trait for successful transport. A high competitive ability at early stages of succession can explains its establishment success in human-altered ecosystems. A high reproduction rate, high capacity for active and passive dispersal, and the escape from native predators and parasites explains its spread success. The high reproduction and the ability to monopolize invertebrate secondary production explain its high impact in the invaded ecosystems. However, further research is needed to understand how other factors, such as population density or the degree of human perturbation can modify the invasive success of this aquatic snai

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres

    Hyperon ordering in neutron star matter

    Full text link
    We explore the possible formation of ordered phases in neutron star matter. In the framework of a quantum hadrodynamics model where neutrons, protons and Lambda hyperons interact via the exchange of mesons, we compare the energy of the usually assumed uniform, liquid phase, to that of a configuration in which di-lambda pairs immersed in an uniform nucleon fluid are localized on the nodes of a regular lattice. The confining potential is calculated self-consistently as resulting from the combined action of the nucleon fluid and the other hyperons, under the condition of beta equilibrium. We are able to obtain stable ordered phases for some reasonable sets of values of the model parameters. This could have important consequences on the structure and cooling of neutron stars.Comment: 6 pages, 2 figures. To appear in the proceedings of the 4th Catania Relativistic Ion Studies: Exotic Clustering (CRIS 2002), Catania, Italy, 10-14 Jun 200

    Static critical behavior of the ferromagnetic transition in LaMnO3.14 manganite

    Full text link
    The ferromagnetic phase transition in LaMnO3.14 is investigated by measuring the dc magnetization as a function of magnetic field and temperature. Modified Arrott plot and Kouvel Fisher analysis yield estimates for the critical exponents beta, and gama, with values between that predicted for the Heisenberg model and mean field theory. At low fields we found an anomalous small value of beta, indicating that the critical behavior is influenced by the range of magnetic fields used.Comment: Presented at ICM 2000 conference. Accepted for publication at J. Magn. Magn. Mate

    Classical emulation of quantum-coherent thermal machines

    Get PDF
    The performance enhancements observed in various models of continuous quantum thermal machines have been linked to the buildup of coherences in a preferred basis. But, is this connection always an evidence of `quantum-thermodynamic supremacy'? By force of example, we show that this is not the case. In particular, we compare a power-driven three-level continuous quantum refrigerator with a four-level combined cycle, partly driven by power and partly by heat. We focus on the weak driving regime and find the four-level model to be superior since it can operate in parameter regimes in which the three-level model cannot, it may exhibit a larger cooling rate, and, simultaneously, a better coefficient of performance. Furthermore, we find that the improvement in the cooling rate matches the increase in the stationary quantum coherences exactly. Crucially, though, we also show that the thermodynamic variables for both models follow from a classical representation based on graph theory. This implies that we can build incoherent stochastic-thermodynamic models with the same steady-state operation or, equivalently, that both coherent refrigerators can be emulated classically. More generally, we prove this for any N-level weakly driven device with a `cyclic' pattern of transitions. Therefore, even if coherence is present in a specific quantum thermal machine, it is often not essential to replicate the underlying energy conversion process.Comment: 13 pages, 4 figures; references updated; appendix adde

    Quantum control of the motional states of trapped ions through fast switching of trapping potentials

    Full text link
    We propose a new scheme for supplying voltages to the electrodes of microfabricated ion traps, enabling access to a regime in which changes to the trapping potential are made on timescales much shorter than the period of the secular oscillation frequencies of the trapped ions. This opens up possibilities for speeding up the transport of ions in segmented ion traps and also provides access to control of multiple ions in a string faster than the Coulomb interaction between them. We perform a theoretical study of ion transport using these methods in a surface-electrode trap, characterizing the precision required for a number of important control parameters. We also consider the possibilities and limitations for generating motional state squeezing using these techniques, which could be used as a basis for investigations of Gaussian-state entanglement.Comment: Accepted by New Journal of Physic
    corecore