346 research outputs found

    Mineralogy, technical properties, deterioration and conservation strategies

    Get PDF
    The present thesis deals with the deterioration and durability of volcanic tuff rocks used as building stones in historical architecture and presents a combined approach on identifying the main parameters responsible for the severe damages that can be observed. A comprehensive study on a dataset of over 500 tuffs from the literature regarding the technical parameters of tuff, in combination with an in-depth study of their petrographical properties, allows for the correlation of individual parameters and to identify key parameters, that influence the weathering behavior of tuff stones. A better evaluation of the weathering behavior of tuff stones can consequently allow for a more precise estimation of their durability. The results demonstrate that pore radii distributions are a good estimator for durability, since micropores (< 0.1 µm) have a particularly strong influence on the weathering behavior of tuffs. Therefore, the important influence of the micropores on salt weathering in tuff rocks is stressed. In addition, the effective porosity and bulk density are identified as reliable estimators to predict the strength (UCS, TS) and durability of tuff rocks (UCS reduction). The hydric expansion of tuff rocks can exceed values multiple times higher than other rock types and is considered to be an important factor for the deterioration of tuffs. It is typically associated with the presence of swellable clay minerals and two types of swelling mechanisms are generally discussed: stepwise intracrystalline swelling and continuous osmotic swelling. A mechanism that can cause expansion in the absence of swellable clay minerals, which is characterized by interaction of surface forces, is the disjoining pressure. The identification of the primary mode of swelling is important for understanding and finally preventing the swelling damage in tuff stones. The swelling experiments show, that intracrystalline swelling is the predominant mechanism for clay swelling in the investigated tuffs. The osmotic swelling on the other hand has only a minor influence on the clay swelling. Therefore, with a clay mineral analyses at hand, the swelling experiments proved to be a useful tool to differentiate between both clay swelling mechanisms in tuff rocks. Also, the importance of the location of the clay minerals in the tuff rock needs to be stressed. We could confirm that even small amounts of swellable clay minerals can cause significant expansion of the material if they are located in critical spots in the rock fabric. The role of the disjoining pressure is still unclear. New analytical techniques have to be developed to quantify its role in moisture expansion of tuff rocks. In addition, the effects of two consolidation agents, tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS), on a larger set of tuffs was evaluated by comparative analyses of petrophysical properties and weathering behavior before and after the treatments. The goal of this approach was to identify a general suitability of the consolidation treatments for different types of tuff. The application of tetramethoxysilane (TMOS) was also conducted with the aim of identifying if this consolidant can be absorbed more efficiently by tuffs with a high share of micropores, due to its smaller molecule size compared to TEOS. The investigation provided a variety of data that indicate, that TMOS may be a suitable candidate to overcome the bottlenecks in the pore space of tuffs, which limit the consolidation success of current products.2021-11-2

    Second order semi-smooth Proximal Newton methods in Hilbert spaces

    Get PDF
    We develop a globalized Proximal Newton method for composite and possibly non-convex minimization problems in Hilbert spaces. Additionally, we impose less restrictive assumptions on the composite objective functional considering differentiability and convexity than in existing theory. As far as differentiability of the smooth part of the objective function is concerned, we introduce the notion of second order semi-smoothness and discuss why it constitutes an adequate framework for our Proximal Newton method. However, both global convergence as well as local acceleration still pertain to hold in our scenario. Eventually, the convergence properties of our algorithm are displayed by solving a toy model problem in function space.Comment: 31 pages, 4 figure

    Biphasic NMR of Hyperpolarized Suspensions─Real-Time Monitoring of Solute-to-Solid Conversion to Watch Materials Grow

    Get PDF
    Nuclear magnetic resonance (NMR) spectroscopy is a key method for the determination of molecular structures. Due to its intrinsically high (i.e., atomistic) resolution and versatility, it has found numerous applications for investigating gases, liquids, and solids. However, liquid-state NMR has found little application for suspensions of solid particles as the resonances of such systems are excessively broadened, typically beyond the detection threshold. Herein, we propose a route to overcoming this critical limitation by enhancing the signals of particle suspensions by >3.000-fold using dissolution dynamic nuclear polarization (d-DNP) coupled with rapid solid precipitation. For the proof-of-concept series of experiments, we employed calcium phosphate (CaP) as a model system. By d-DNP, we boosted the signals of phosphate 31^{31}P spins before rapid CaP precipitation inside the NMR spectrometer, leading to the inclusion of the hyperpolarized phosphate into CaP-nucleated solid particles within milliseconds. With our approach, within only 1 s of acquisition time, we obtained spectra of biphasic systems, i.e., micrometer-sized dilute solid CaP particles coexisting with their solution-state precursors. Thus, this work is a step toward real-time characterization of the solid–solution equilibrium. Finally, integrating the hyperpolarized data with molecular dynamics simulations and electron microscopy enabled us to shed light on the CaP formation mechanism in atomistic detail

    A numerical stability analysis for the Einstein-Vlasov system

    Full text link
    We investigate stability issues for steady states of the spherically symmetric Einstein-Vlasov system numerically in Schwarzschild, maximal areal, and Eddington-Finkelstein coordinates. Across all coordinate systems we confirm the conjecture that the first binding energy maximum along a one-parameter family of steady states signals the onset of instability. Beyond this maximum perturbed solutions either collapse to a black hole, form heteroclinic orbits, or eventually fully disperse. Contrary to earlier research, we find that a negative binding energy does not necessarily correspond to fully dispersing solutions. We also comment on the so-called turning point principle from the viewpoint of our numerical results. The physical reliability of the latter is strengthened by obtaining consistent results in the three different coordinate systems and by the systematic use of dynamically accessible perturbations.Comment: 35 pages, 12 figure

    Disruptive effects of plasticizers bisphenol A, F, and S on steroidogenesis of adrenocortical cells

    Get PDF
    IntroductionEndocrine disrupting chemicals (EDCs) are known to interfere with endocrine homeostasis. Their impact on the adrenal cortex and steroidogenesis has not yet been sufficiently elucidated. This applies in particular to the ubiquitously available bisphenols A (BPA), F (BPF), and S (BPS).MethodsNCI-H295R adrenocortical cells were exposed to different concentrations (1nM-1mM) of BPA, BPF, BPS, and an equimolar mixture of them (BPmix). After 72 hours, 15 endogenous steroids were measured using LC-MS/MS. Ratios of substrate and product of CYP-regulated steps were calculated to identify most influenced steps of steroidogenesis. mRNA expression of steroidogenic enzymes was determined by real-time PCR.ResultsCell viability remained unaffected at bisphenol concentrations lower than 250 µM. All tested bisphenols and their combination led to extensive alterations in the quantified steroid levels. The most profound fold changes (FC) in steroid concentrations after exposure to BPA (&gt;10µM) were seen for androstenedione, e.g. a 0.37±0.11-fold decrease at 25µM (p≤0.0001) compared to vehicle-treated controls. For BPF, levels of 17-hydroxyprogesterone were significantly increased by 25µM (FC 2.57±0.49, p≤0.001) and 50µM (FC 2.65±0.61, p≤0.0001). BPS treatment led to a dose-dependent decrease of 11-deoxycorticosterone at &gt;1µM (e.g. FC 0.24±0.14, p≤0.0001 at 10µM). However, when combining all three bisphenols, additive effects were detected: e.g. 11-deoxycortisosterone was decreased at doses &gt;10µM (FC 0.27±0.04, p≤0.0001, at 25µM), whereas 21-deoxycortisol was increased by 2.92±0.20 (p≤0.01) at 10µM, and by 3.21±0.45 (p≤0.001) at 50µM. While every measured androgen (DHEA, DHEAS, androstenedione, testosterone, DHT) was lowered in all experiments, estradiol levels were significantly increased by BPA, BPF, BPS, and BPmix (e.g. FC 3.60±0.54, p≤0.0001 at 100µM BPF). Calculated substrate-product ratios indicated an inhibition of CYP17A1-, and CYP21A2 mediated conversions, whereas CYP11B1 and CYP19A1 showed higher activity in the presence of bisphenols. Based on these findings, most relevant mRNA expression of CYP genes were analysed. mRNA levels of StAR, CYP11B1, and CYP17A1 were significantly increased by BPF, BPS, and BPmix.DiscussionIn cell culture, bisphenols interfere with steroidogenesis at non-cytotoxic levels, leading to compound-specific patterns of significantly altered hormone levels. These results justify and call for additional in-vivo studies to evaluate effects of EDCs on adrenal gland functionality

    Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of treatment in hemianopic patients to restore missing vision is controversial. So far, successful techniques require laborious stimulus presentation or restrict improvements to selected visual field areas. Due to the large number of brain-damaged patients suffering from visual field defects, there is a need for an efficient automated treatment of the total visual field.</p> <p>Methods</p> <p>A customized treatment was developed for the reaction perimeter, permitting a time-saving adaptive-stimulus presentation under conditions of maximum attention. Twenty hemianopic patients, without visual neglect, were treated twice weekly for an average of 8.2 months starting 24.2 months after the insult. Each treatment session averaged 45 min in duration.</p> <p>Results</p> <p>In 17 out of 20 patients a significant and stable increase of the visual field size (average 11.3° ± 8.1) was observed as well as improvement of the detection rate in the defective visual field (average 18.6% ± 13.5). A two-factor cluster analysis demonstrated that binocular treatment was in general more effective in augmenting the visual detection rate than monocular. Four out of five patients with a visual field increase larger than 10° suffered from hemorrhage, whereas all seven patients with an increase of 5° or less suffered from infarction. Most patients reported that visual field restoration correlated with improvement of visual-related activities of daily living.</p> <p>Conclusion</p> <p>Rehabilitation treatment with the Lubeck Reaction Perimeter is a new and efficient method to restore part of the visual field in hemianopia. Since successful transfer of treatment effects to the occluded eye is achieved under monocular treatment conditions, it is hypothesized that the damaged visual cortex itself is the structure in which recovery takes place.</p

    Tracing Functional Antigen-Specific CCR6+ Th17 Cells after Vaccination

    Get PDF
    BACKGROUND: The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6 (CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17) cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological immune response is still elusive. METHODOLOGY/PRINCIPAL FINDINGS: We analysed the development and functionality of Th17 cells in immune-competent mice during an ongoing immune response. In naïve and vaccinated animals CCR6(+) Th cells produce IL-17. The robust homeostatic proliferation and the presence of activation markers on CCR6(+) Th cells indicate their activated status. Vaccination induces antigen-specific CCR6(+) Th17 cells that respond to in vitro re-stimulation with cytokine production and proliferation. Furthermore, depletion of CCR6(+) Th cells from donor leukocytes prevents recipients from severe disease in experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections

    The Event Horizon Telescope Image of the Quasar NRAO 530

    Get PDF
    We report on the observations of the quasar NRAO 530 with the Event Horizon Telescope (EHT) on 2017 April 5−7, when NRAO 530 was used as a calibrator for the EHT observations of Sagittarius A*. At z = 0.902, this is the most distant object imaged by the EHT so far. We reconstruct the first images of the source at 230 GHz, at an unprecedented angular resolution of ∼20 μas, both in total intensity and in linear polarization (LP). We do not detect source variability, allowing us to represent the whole data set with static images. The images reveal a bright feature located on the southern end of the jet, which we associate with the core. The feature is linearly polarized, with a fractional polarization of ∼5%-8%, and it has a substructure consisting of two components. Their observed brightness temperature suggests that the energy density of the jet is dominated by the magnetic field. The jet extends over 60 μas along a position angle ∼ −28°. It includes two features with orthogonal directions of polarization (electric vector position angle), parallel and perpendicular to the jet axis, consistent with a helical structure of the magnetic field in the jet. The outermost feature has a particularly high degree of LP, suggestive of a nearly uniform magnetic field. Future EHT observations will probe the variability of the jet structure on microarcsecond scales, while simultaneous multiwavelength monitoring will provide insight into the high-energy emission origin
    • …
    corecore